_ Le Modèle Atomique et la configuration électronique _

Partie I : Modèle de l'atome

Exercice 1:

QUESTIONS À CHOIX MULTIPLES

Choisir et recopier sur le cahier d'exercices la (ou les) bonne(s) réponse(s).

- 1) La charge d'un électron est :
 - a) $-1.6 \times 10^{+19}$ C
 - b) 1.6×10^{-19} C
 - c) -1.6×10^{-19} C
- 2) La particule non chargée de l'atome est :
 - a) Le proton.
 - b) Le neutron.
 - c) L'électron.
- **3)** Les deux particules constituant l'atome et ayant des masses voisines sont :
 - a) Le proton et l'électron.
 - b) Le proton et le neutron
 - c) L'électron et le neutron.
- **4**) On représente symboliquement un noyau ou un atome par :

$$_{A}^{Z}X$$
 ; $_{Z}^{A}X$; X_{Z}^{A}

RÉPONDRE PAR VRAI OU FAUX

- 1) Recopier les phrases suivantes sur le cahier d'exercices et répondre par vrai ou faux.
- a) Le nombre de charge est par définition égal au nombre de protons dans le noyau.
- b) Le nombre de charge est par définition égal au nombre d'électrons dans l'atome isolé.
- c) Le nombre de masse est noté Z.
- d) Le nombre de masse est par définition égal au nombre de nucléons dans le noyau.
- e) Le nombre de masse est égal à la valeur de la masse de l'atome exprimée en gramme.
- f) Le nombre de neutrons dans un noyau est toujours égal au nombre de protons.
- **2)** Le noyau d'un atome de sodium renferme 11 protons :
 - a) Le nombre d'électrons autour du noyau est égal à
 11.
 - b) Le nombre de nucléons dans le noyau de cet atome est égal à 11.
- 3) Le noyau du silicium représenté par $^{28}_{14}Si$ contient :
 - a) 14 protons;
 - b) 28 neutrons;
 - c) 14 électrons;
 - d) 28 nucléons.

_ Le Modèle Atomique et la configuration électronique _

Exercice 2:

Compléter le tableau suivant par ce qui convient :

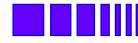
Elément chimique	Aluminium (Al)	Azote (N)	Fluor (F)	Lithium (Li)	
A	27	14		7	
Z		7	9		
N	14		10	4	

Exercice 3:

L'ion magnésium Mg²⁺ possède 10 électrons et 12 neutrons.

1) Calculer la charge du noyau de l'ion magnésium. Déduire, en le justifiant, celle de l'atome correspondant.

2)


- a) Définir l'élément chimique.
- b) Déterminer le numéro atomique de l'élément magnésium.
- c) Déterminer le nombre de masse de cet élément.
- d) Donner la représentation symbolique du noyau de l'élément magnésium.
- 3) L'élément magnésium possède deux autres isotopes, l'un possède 13 neutrons et l'autre possède 26 nucléons et qui sont respectivement dans les proportions 10 % et 11 %.
 - a) Définir les isotopes d'un élément chimique.
 - b) Donner la composition, en neutrons, en protons et en électrons de chaque isotope.

On donne : $e = 1,6.10^{-19} \text{ C}$; $m_p \approx m_n = 1,67.10^{-24} \text{ g}$

Exercice 4:

L'élément chimique chlore (Cl) possède deux isotopes.

- 1) Le premier isotope du chlore possède 17 électrons et 35 nucléons dans son noyau.
 - a) Déterminer le nombre de charge Z de cet atome.
 - b) Déterminer le nombre de neutrons N de cet atome.
 - c) Donner le symbole du noyau de ce premier isotope de l'élément chlore.
- 2) Sachant que le deuxième isotope possède deux particules de plus dans son noyau que le premier.
 - a) Identifier ces deux particules.
 - **b**) Donner le symbole de ce deuxième isotope de l'élément chlore.

_ Le Modèle Atomique et la configuration électronique __

Exercice 5:

Calculer la valeur approchée de la masse d'un atome de zinc (Z = 30 et A = 65).

Exercice 6:

L'atome de cuivre possède 29 électrons et 63 nucléons.

- 1) Quelle est la charge totale des électrons?
- 2) En déduire la charge du noyau de l'atome de cuivre Cu ainsi que le nombre de protons dans le noyau.
- 3) Quel est alors le nombre de charge de cet atome ?
- 4) Donner la représentation symbolique de cet atome et de son noyau.

Exercice 7:

L'iode symbolisé par I possède 127 nucléons. La charge de son noyau est $q = 8,48.10^{-18}$ C.

- 1) Quel est le nombre de charge (ou numéro atomique) Z de cet atome ?
- 2) Calculer le nombre de neutrons dans son noyau.
- 3) Quel est le nombre d'électrons de l'atome d'iode?
- 4) Donner la représentation symbolique de l'atome d'iode.
- 5) Calculer une valeur approchée de la masse de l'atome d'iode.
- 6) Quel est le nombre d'atomes d'iode contenu dans un échantillon de masse m = 20 g?
- 7) Calculer la masse d'une mole d'atomes d'iode.

On donne : $e = 1,6. \ 10^{-19} C$; $m_p \approx m_n = 1,67. \ 10^{-27} kg$;

Exercice 8:

On donne les symboles des atomes suivants : ${}^{48}_{22}Ti$; ${}^{80}_{50}Br$

- 1) Donner la composition du noyau de chaque atome.
- 2) Calculer la charge du noyau de chaque atome.
- 3) Calculer une valeur approchée de la masse de chaque atome.
- **4)** On donne les rayons atomiques de Ti et de Br : $r_{Ti} = 1,36.10^{-10} m$ et $r_{Br} = 1,14.10^{-10} m$.
 - a) Calculer le rapport des rayons des atomes $\frac{r_{Ti}}{r_{Br}}$

_ Le Modèle Atomique et la configuration électronique _

b) Si on suppose que l'atome de titane Ti est représenté par un ballon de volleyball de diamètre 21cm, par quel ballon parmi les suivants peut-on représenter l'atome de brome Br ?

Ballon	Tennis	Hand-ball	Football	Basketball	
Diamètre en cm	6,5	17,5	22	24	

_ Le Modèle Atomique et la configuration électronique __

Partie II: La configuration électronique

	•	
Exercice	u	
LAUCUCE	_	•

1) Recopier sur le canier d'exercices et completer le texte par les mots convenables.
Les électrons d'un atome se répartissent sur des Celles-ci sont désignées par des lettres,
, Les électrons se répartissent d'abord dans la couche qui ne peut contenir que
électrons, puis dans la couche qui ne peut contenir au maximum que électrons. Ensuite dans la
couche

- 2) Répondre sur le cahier d'exercices par vrai ou faux.
 - a) L'atome de magnésium a 12 électrons, sa structure électronique est $(K)^2(L)^2(M)^8$
- **b)** Le niveau d'énergie correspondant à n = 2 est saturé avec 8 électrons.
- c) Si deux atomes ont le même nombre d'électrons externes (ou de valence), ils auront la même structure électronique.
- 3) Choisir et recopier sur le cahier d'exercices la (ou les) bonne(s) réponse(s).
 - ${\bf a})$ Sur les couches K, L, M on peut placer :
 - ✓ un nombre infini d'électrons ;
 - ✓ le même nombre d'électrons ;
 - ✓ un nombre limité d'électrons pour chaque couche.
- **b)** Sachant que le nombre de charge de l'atome d'aluminium Al est Z=13, la structure électronique de l'ion Al^{3+} dans son état fondamental est :
 - $\checkmark (K)^2(L)^1$
 - \checkmark (K)²(L)⁸(M)³
 - \checkmark $(K)^2(L)^8$
 - c) L'atome de sodium dont le numéro atomique est égal à 11 possède sur sa couche externe :
 - ✓ 11 électrons :
 - ✓ 1 électron;
 - ✓ 8 électrons.

Exercice 10:

Quelle est la configuration électronique des atomes suivants 9_4B ; ${}^{27}_{13}Al$ et ${}^{31}_{15}P$

_ Le Modèle Atomique et la configuration électronique __

Exercice 11:

Un atome possède 7 électrons dans son cortège électronique.

- 1) Donner la répartition électronique de cet atome dans son état fondamental.
- 2) Préciser le nombre d'électrons de valence.

Exercice 12:

La structure électronique du silicium est : $(K)^2(L)^8(M)^4$. Le noyau de cet atome possède 14 neutrons.

- 1) Quel est le numéro atomique du silicium?
- 2) Combien d'électrons de valence possède l'atome de silicium ?
- 3) Donner la représentation symbolique de l'atome de silicium.

Exercice 13:

L'ion sulfure S^{2-} a un nombre de charge Z = 16.

- 1) Calculer le nombre d'électrons dans l'ion sulfure ?
- 2) Donner la structure électronique de cet ion.
- 3) Quel est le nombre d'électrons sur la couche externe de l'ion sulfure ? Cette couche est-elle saturée ou non ?

Exercice 14:

- 1) Soit l'atome d'argon caractérisé par Z = 18 et A = 40.
 - a) Représenter la répartition électronique de cet atome.
 - **b)** Quel est le nombre d'électrons de valence (ou électrons externes) ?
 - c) Que peut-on dire de toutes les couches électroniques de cet atome ?
- 2) Le nombre de charge de l'atome de chlore Cl est Z = 17.
 - a) Donner la répartition des électrons de l'ion chlorure Cl dans son état fondamental.
 - b) Comparer la structure électronique de l'ion chlorure Cl⁻ à celle de l'argon.

Exercice 15:

Soient les atomes de sodium et de magnésium.

1) Écrire les configurations électroniques des atomes de sodium et de magnésium.


_ Le Modèle Atomique et la configuration électronique _

- 2) Déduire les configurations électroniques des ions sodium Na⁺ et magnésium Mg²⁺.
- 3) Que peut-on dire de la couche externe de ces ions ?
- 4) Rechercher au moins un ion monoatomique négatif ayant la même configuration électronique que l'ion Na^+

Exercice 16:

En se basant sur la configuration électronique des atomes suivants : 1_1H ; 4_2He ; 7_3Li ; 9_4Be ; ${}^{12}_5B$; ${}^{12}_6C$; ${}^{14}_7N$; ${}^{16}_{18}O$; ${}^{19}_9F$; ${}^{20}_{10}Ne$; ${}^{23}_{11}Na$; ${}^{24}_{12}Mg$; ${}^{27}_{13}Al$; ${}^{28}_{14}Si$; ${}^{31}_{15}P$; ${}^{32}_{16}S$; ${}^{35}_{17}Cl$; ${}^{40}_{18}Ar$, compléter le tableau ci-dessous :

		Nombre d'électrons de valence (ou électrons externes)							
		I	II	III	IV	V	VI	VII	VIII
		1_1H							
1	1	$(K)^1$							
Nombre									²⁰ ₁₀ Ne
de	2								$^{20}_{10}$ Ne $(K)^2(L)^8$
couches						31 ₁₅ P			
	3					$^{31}_{15}P$ $(K)^2(L)^8(M)^5$			

