Les réactions acido-basiques

DELAHI MOHAMED (1 Bac SM)

I) <u>Les acides et les bases selon Bronsted :</u>

Définition d'un acide selon Bronsted:

Un acide est espèces chimique (molécule ou ion) capable de céder un proton H⁺ lors d'une réaction chimique.

Définition d'une base selon Bronsted :

Une base est une espèce chimique (molécule ou ion) capable de capter un proton H⁺ lors d'une réaction chimique.

Quelques exemples d'acides et de bases usuels

> Acides du laboratoire :

- ✓ Solution d'acide chlorhydrique $(H_3O^+_{(aq)} + Cl_{(aq)})$
- ✓ Solution d'acide nitrique $(H_3O^+_{(aq)} + NO_3^-_{(aq)})$
- ✓ Solution d'acide sulfurique $(2H_3O^+_{(aq)} + SO_4^{2-}_{(aq)})$
- ✓ L'acide éthanoïque CH₃COOH
- ✓ Solution de dioxyde de carbone CO₂,H₂O

- ✓ Les détartrants ,Antikal, Ajax, Harpic.. (contiennent de l'acide chlorhydrique ou phosphorique)
- ✓ Le vinaigre (contient de l'acide éthanoïque)
- ✓ Le coca-cola (contient de l'acide phosphorique)...

> Bases du laboratoire :

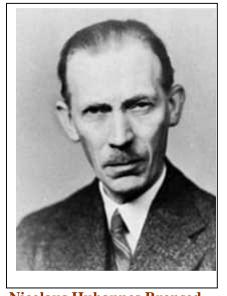
- \checkmark Solution d'hydroxyde de sodium ou soude (Na $^+_{(aq)}$ + HO $^-_{(aq)}$)
- ✓ Solution d'hydroxyde de potassium $(K^{+}_{(aq)} + HO^{-}_{(aq)})$
- ✓ L'ammoniac (NH₃)
- ✓ Solution de carbonate de sodium $(2Na^{+}_{(aq)} + CO_3^{2^{-}_{(aq)}})$

> Bases de la vie courante :

- ✓ Déboucheur, Destop (contient de la soude)
- ✓ Levure.

II) Couple acide / base

1 – Définition


Un couple acide / base est constitué d'un acide et d'une base qui se transforment l'une en l'autre par un transfert d'un proton H^+ .

$$A \ cide \iff b \ a \ s \ e + H^+$$

L'acide et la base sont conjugués.

Exemple:

Exemple:						
Formule du couple acide/base	noms	Demi-équation				
$NH_{4}^{+}_{(aq)}/NH_{3(aq)}$	Ion ammonium/ammoniac	$NH_{(aq)}^{4+} \iff NH_{(aq)}^3 + H^+$				
CH ₃ COOH/CH ₃ COO ⁻	Acide éthanoïque/ion éthanoate	$CH_3COOH \rightleftharpoons CH_3COO_{(aq)}^- + H^+$				
HCO ₃ -/CO ₃ ²⁻	Ion hydrogénocarbonate/ion carbonate	$HCO_3^- = CO_3^{2-} + H^+$				
CO ₂ ,H ₂ O/ HCO ₃ ⁻	Dioxyde de carbone solvaté/ Ion hydrogénocarbonate	$CO_2, H_2O = HCO_3^- + H^+$				

2 – Les couples de l'eau

L'eau est un ampholyte (ou espèce amphotère) car elle appartient à deux couples acido-basique :

- l'eau est la base du couple acido-basique $H_3O^+/H_2O^ (H_3O^+_{(aq)} = H_2O_{(l)} + H^+)$
- l'eau est l'acide du couple acido-basique $H_2O/HO^ (H_2O_{(l)} = HO^-_{(aq)} + H^+)$ autre espèce amphotère : l'ion hydrogénocarbonate HCO_3^-

<u>3 – Les indicateurs colorés</u>

Un indicateur coloré est un couple acido-basique pour lequel la forme acide n'a pas la même couleur que sa forme conjuguée basique.

Le changement de couleur de l'indicateur coloré a lieu pour une valeur de pH particulière caractéristique de l'indicateur. On peut noter ce couple IndH/Ind⁻.

Exemples

Indicateur coloré	Couleur forme acide	Zone de virage	Couleur forme basique
Bleu de bromothymol (BBT)	jaune	6 < pH < 7,6	Bleu
Hélianthine	rouge	3,1 < pH < 4,4	Jaune
Phénolphtaléïne	incolore	8,2 < pH < 10	Rouge-violacé

III) Equation chimique d'une réaction acido-basique

1 – Caractéristiques

Une réaction acido-basique fait intervenir deux couples acide/base.

Pour obtenir l'équation d'une réaction acido-basique, on peut additionner les deux demi-équations de chacun des couples acide/base mis en jeu.

Réaction entre un acide 1 et une base 2 appartenant respectivement aux couples acide 1/base 1 et acide 2/base 2 :

acide 1
$$\rightleftharpoons$$
 base $1 + H^+$
base $2 + H^+$ \rightleftharpoons acide 2

acide
$$1 + \text{base } 2 + \text{H}^+ \rightarrow \text{base } 1 + \text{acide } 2 + \text{H}^+$$

acide $1 + \text{base } 2 \rightarrow \text{base } 1 + \text{acide } 2$

Remarque : cette réaction s'accompagne d'une variation de pH.

2 – Exemples :

Réaction entre HO et CH₃COOH:

$$HO^- + H^+ \rightleftharpoons H_2O$$

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

$$HO^{\text{-}} + CH_3COOH \rightarrow H_2O + CH_3COO^{\text{-}}$$

$$H_3O^+ \rightleftarrows H_2O + H^+$$

$$HCO_3^- + H^+ \rightleftharpoons CO_2, H_2O$$

$$HCO_3 + H_3O^+ = CO_2 + 2 H_2O$$