2- Grandeurs physiques liées aux quantités de matière

C- Applications au suivi d'une réaction chimique

Application 1: Le zinc réagit avec l'acide chlorhydrique pour donner un dégagement gazeux de dihydrogène et des ions $Zn^{2+}_{(aq)}$ en solution aqueuse. On fait réagir un volume $V_1 = 20,0$ mL d'acide chlorhydrique de concentration $C_1 = 5,00$ mol.L⁻¹ avec une masse m = 0,11 g de zinc solide . Faire un bilan de matière et calculer le volume V de dihydrogène obtenu .

On précise que les ions chlorure sont des ions spectateurs et que dans les conditions de l'expérience, le volume molaire $V_m = 24$, 3 L.mol⁻¹ et la masse molaire du zinc M(Zn) = 65, 4 g.mol⁻¹.

Les différentes étapes de résolution :

- 1. Écrire l'équation de la réaction.
- 2. Donner l'état initial du système et calculer les quantités de matière des différents réactifs.
- 3. Dresser un tableau d'avancement de la réaction.
- 4. Déterminer la valeur de x max
- 5. Faire le bilan de matière et calculer le volume de dihydrogène obtenu

```
Équation de la réaction : Zn_{(s)} + 2H^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_{2(g)} - État initial et quantité de matière : n_{i}(H^{+}) = C_{1} \cdot V_{1} n_{i}(H^{+}) = 5,00 \times 20,0 \times 10^{-3} n_{i}(H^{+}) = 0,10 \text{ mol.} n_{i}(Zn) = m/M(Zn) n_{i}(Zn) = 0,11/65,4 n_{i}(Zn) = 1,710^{-3} \text{ mol.}
```

Tableau d'avancement de la réaction.

Équation		$Zn_{(s)}$ + $2H^{+}_{(aq)}$ \rightarrow $Zn^{2+}_{(aq)}$ + $H_{2(g)}$					
État u système	Avancement	mol	mol		mol	mol	
État initial (mol)	x = 0	n _i (Zn) = 1,7 x 10 ⁻³	n;(H+) = 0,10		0	0	
Au cours de la Transformation	x	1,7 x 10 ⁻³ - x	0,10 - 2 x		×	×	
État final (mol)	X = X _{max}	1,7 x 10 ⁻³ ~	0,10 - 2 x _{max}		X _{max}	X _{max}	

Pour compléter le tableau, il faut déterminer la valeur de x_{max} On peut calculer les deux valeurs de x_{max} en résolvant les deux équations suivantes :

$$1.7 \times 10^{-3}$$
 - $x_{max1} = 0$ et $0.10 - 2 x_{max2} = 0$
 $x_{max1} = 1.7 \times 10^{-3}$ mol et $x_{max2} = 0.050$ mol

La valeur retenue pour x_{max} est la plus faible des deux valeurs :

$$x_{max} = x_{max1} = 1,7 \times 10^{-3} \text{ mol}$$

Maintenant, on peut compléter le tableau et donner l'état final du système.

Équation		Zn (s)	+ 2 H + _(aq)	\rightarrow	Zn ²⁺ (aq)	+ H _{2(g)}
État u système	Avancement	mol	mol		mol	mol
État initial (mol)	x = 0	$n_i(Zn) = 1,7 \times 10^{-3}$	n; (H+) = 0,10		0	0
Au cours de la transformation	x	1,7 x 10 ⁻³ ~ x	0,10 - 2 x		X	x
État final (mol)	x = x _{max}	1,7 x 10 ⁻³ - x max	0,10 - 2 x _{max}		X _{max}	X _{max}

Le zinc métal est le réactif limitant. La réaction s'arrête lorsqu'il est totalement consommé.

Volume de dihydrogène obtenu en fin de réaction :

$$V = x_{max} \cdot V_{m}$$

 $V = 1,7 \times 10^{-3} \times 24,3$
 $V \approx 4,1 \times 10^{-2} L$
 $V \approx 41 \text{ mL}$