Année scolaire 2019-2020

Série d'exercices champ électrostatique-potentiel électrostatique

1er Bac Sc

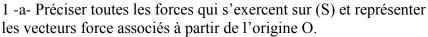
Math Blot

Lycée Salah

Esrghini Benguerir

verticale

Prof.Saida Elajoumi


Exercice 1:

Une sphère (S) assimilable à un corps ponctuel est attachée à un fil de longueur l'inextensible et de masse négligeable.

La sphère de masse m porte une charge q négative.

L'ensemble { fil, (S) } constitue un pendule électrique.

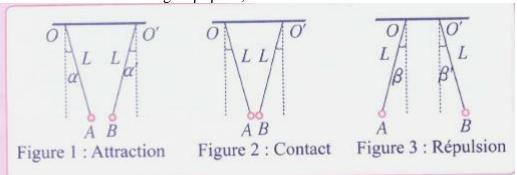
Placé dans une région où règne un champ électrique uniforme E horizontal, le fil occupe une position d'équilibre inclinée d'un angle α par rapport à la verticale et la sphère occupe la position O origine du repère d'espace (O,i,j)

-b- Déterminer le sens du vecteur champ électrique uniforme E.

2 -a- Appliquer la condition d'équilibre au système $\{\,(S)\,\}$ et écrire la relation entre les vecteurs force.

Effectuer les projections de cette relation sur les axes (O, i) et (O, j).

-b- En déduire l'expression littérale de E puis celle de la norme de la tension T du fil.

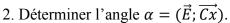

Calculer la valeur de E et celle de T.

Données : m = 2.5 g; $q = -0.5 \mu C$; $\alpha = 10^{\circ}$ et g = 9.8 N.kg-1

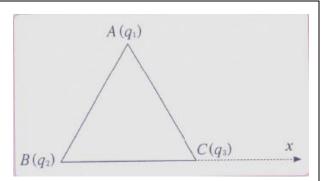
On réalise les expériences suivantes à l'aide de deux pendules électrostatique de charges q_A et q_B formés d'une boule de masse m=350mg fixée à un fil de masse négligeable et de longueur L=40cm. Dans la première étape de l'expérience (figure 1), on fixe les fils en O et O' avec OO'=30cm, puis on mesure les angles $\alpha=\alpha$ '=15° et $d_1=AB=12cm$.

On rapproche ensuite O' et O de façon à obtenir le contact entre les deux boules (figure 2) qui se répartissent alors les charges de manière homogène pour donner une nouvelle charge positive. Pour finir, on déplace O' jusqu'à ce que la distance séparant les deux boules soit de $d_2 = AB = 6cm$ (figure 3) et on mesure alors les angles $\beta = \beta' = 3,2^{\circ}$.

On rappelle que le module du champ électrostatique crée par une charge ponctuelle s'écrit :


- 1. En exploitant la première expérience, établir que $q_A q_B = -4\pi \varepsilon_0$. $m. g. \tan \alpha$. d_1^2 .
- 2. Monter que ces résultats expérimentaux permettent de retrouver les charges q_A et q_B des boules A et B avant et après le contact sachant que le pendule A a été chargé positivement.
- 3. Calculer ces charges.

Données : g=9.81N.kg⁻¹ ; $\varepsilon_0 = 8.85.10^{-12}$ S.I


Exercice 3:

On place trois particules dotée respectivement de charge électriques valant $q_1 = 4\mu C$; $q_2 = 8\mu C$; $q_3 = -6\mu C$ aux sommets d'un triangule équilatéral dont les cotés mesurent a=1.2m.

1. Déterminer la norme du champ électrostatique \vec{E} créé au point C par les deux charges q_1 et q_2 . On donne $k=9.10^9 S.I$.

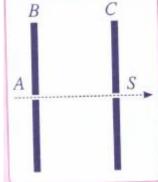
3. Déterminer les caractéristiques de la force \vec{F} appliquée à la charge q_3

Exercice 4:

On considère deux charge ponctuelles -q et q placée sur un axe Ox respectivement en A et B d'abscisses $x_A=-a$ et $x_B=a$ on donne q>0.On considère un point M de l'axe Ox.

Montrer que la valeur algébrique \overline{E}_x du champ électrostatique \overline{E} créé au point M peut s'écrire :

1. Dans le cas
$$|x| > a$$
; $E_x = 4Kq \frac{a \cdot |x|}{(x^2 - a^2)^2}$

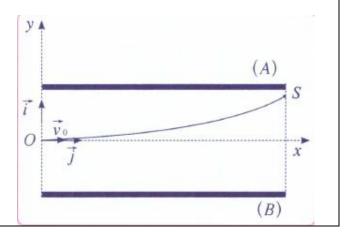

2. Dans le cas
$$|x| < a$$
; $E_x = -2Kq \frac{x^2 + a^2}{(x^2 - a^2)^2}$

Exercice 5:

On applique une tension U_{BC} , de valeur absolue U, entre deux électrodes B et C planes et parallèles. Entre elles règne alors un champ électrique uniforme. Des électrons de charge (q=-e) peuvent pénétrer en A et sortir en S. Elles ne sont soumises qu'à la seule force électrique.

Données : $e=1,6.10^{-19}C$ et $m_e=9,1.10^{-31} kg$

- 1. Vérifier la justesse de cette dernière phrase.
- 2. Un électron pénètre en A avec une vitesse négligeable et ressort en S avec une vitesse v_1 . Quel doit être le signe de la tension U_{BC} ?
- 3. Calculer la valeur v_1 de la vitesse pour U=500V.
- 4. Des protons H^+ , de masse $m_p = 1,67.10^{-27} kg$, pénètrent en A avec une vitesse initiale négligeable. En S, leur vitesse a la valeur $v_2 = 3,2.10^6 m.s^{-1}$. Donner le signe et la valeur de U_{BC} pour qu'il en soit ainsi.

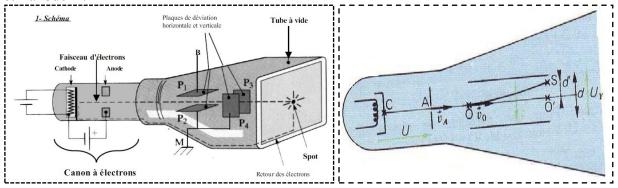


Exercice 6:

Deux plateaux métalliques verticaux, A et B, parallèles, distants de d=10cm, sont reliés, respectivement aux bornes d'une machine électrostatique, qui maintient entre eux la tension U.

Un proton de masse $m=1,67.10^{-27}kg$ pénètre entre les deux plaques au point O avec une vitesse initiale $\overrightarrow{v_0}$ horizontale selon l'axe Ox et traverse la région entre les plaques pour en sortir au point S, d'ordonnée y_s .

Données: $e=1,6.10^{-19}C$; $|U_{AB}|=$



900V; $y_s = 5cm$; g = 10N/kg; $v_0 = 6.10^5 m.s^{-1}$.

- 1. Quel est le signe de la tension U_{AB}? Justifier.
- 2. Quelles sont les forces appliquées au proton entre A et B ? les comparer et conclure.
- 3. En utilisant le théorème de l'énergie cinétique, exprimer la vitesse de sortie v_s atteinte par le proton au point S, en fonction des données de l'exercice.
- 4. Calculer cette vitesse.

Exercice 7:

Dans le canon à électrons d'un oscillographe (voir fig.), les électrons sortant de la cathode avec une vitesse supposée nulle, sont accélérés par une tension U=1600V appliquée entre la cathode C et l'anode A.

Partie I:

- 1) Calculer en mètres par seconde la vitesse va des électrons à la sortie du canon.
- 2) Calculer en joule et en kilo électronvolts, leur énergie cinétique Eca
- 3) Les électrons pénètrent avec une vitesse vo = vA, entre les plaques de déviation verticale, en un point O situé à égale distance de chacune d'elles. Lorsque la tension $U_1 = 500V$ est appliquée à ces plaques distantes de d = 2cm, les électrons sortent de l'espace champ en un point S tel que O'S = d' = 0.6cm.
- a) On prend l'origine des potentiels $V_0 = 0$ au point O. Calculer Vs potentiel électrostatique du point S de l'espace champ.
- **b**) Déterminer Epo et Eps, énergies potentielles électrostatique d'un électron en O et en S dans l'espace champ, en joules et en kilo électronvolts.
- c) En déduire Ecs énergie cinétique de sortie des électrons, en kilo électronvolts.

Partie II:

Un faisceau d'électrons pénètre en A entre deux plaques, horizontales, parallèles chargées, avec une vitesse v_A faisant un angle avec l'horizontal

- **1-**Peut-on, par analogie avec le champ de pesanteur, prévoir la forme de la trajectoire du faisceau électronique ?
- **2-**Les points A, B et C de la trajectoire sont respectivement à l_A =16mm, l_B = 4mm et l_C = 25mm de la plaque négative. La distance entre les plaques est d = 30mm et la tension

 $U_{PN}=1000V$. La vitesse initiale v_A des électrons (même vitesse que la partie I). La masse d'un électron est $me=9,1.10^{-31}kg$.

- l_{A} \downarrow^{r} A \downarrow^{r} A \downarrow^{r} A \downarrow^{r} A \downarrow^{r} A \downarrow^{r} \downarrow^{r}
- **2.1-**Calculer l'énergie totale de l'électron au cours de son mouvement entre les plaques. On admettra qu'il est soumis à la seule force électrostatique et on prendra $V_N=0$.
- **2.2-**En chacun des points B et C, calculer l'énergie potentielle électrostatique et l'énergie cinétique de l'électron en électron-volt (eV).