<u>NC</u>	<u>DM</u> :	<u>Prénom</u> :			<u>Clas</u>	sse: 1 ère S2	
	Le 07/05/2015 <u>De</u>	<u>voir n°6</u> (1h) -	Calculatric	e autorisé	e	<u>Page</u> : 1 / 4	
	Réactions nucléaires (3 points) 1) Quelles sont les deux lois de conserva 2) Compléter les équations ci-dessous et nucléaire mise en jeu.						
	$\begin{array}{c} 235 \\ 92 \text{ U} + {}^{1}_{0} \text{ n} \rightarrow {}^{53} \text{ I} + {}^{94}_{\dots} \text{ Y} + 3 {}^{1}_{0} \end{array}$	n					
	$^{244}_{96} \text{Cm} \rightarrow ^{240}_{94} \text{Pu} + \dots$						
	$^{210}_{83} \text{ Bi} \rightarrow ^{210}_{84} \text{ Po} + \dots$						
	$^{74}_{33} \text{ As} \rightarrow ^{\cdots}_{32} \text{ Ge} + ^{\cdots}_{\cdots} \text{ e}$						
	${}^2_1 H + \dots H \rightarrow {}^3_2 He$						
Π.	Réacteurs nucléaires (7 points)	·					
	• Données :		,			1	
	Noyau ou particule	$^{235}_{92}$ U	¹³⁹ ₅₄ Xe	⁹⁴ ₃₈ Sr	$\frac{1}{0}$ n		
	Masse (u) u : unité de masse atomiq	•	138,889 17	93,894 51	1,008 66		
 1 u = 1,660 54 × 10⁻²⁷ kg; c = 2,997 924 58 × 10⁸ m.s⁻¹; 1 MeV (mégaélectronvolt) = 1,602 18 × 10⁻¹³ J 1. Le réacteur international expérimental ITER La fusion étudiée dans le réacteur international expérimental ITER à Cadarache (Bouches du Rhône) met en jet les deux isotopes minoritaires de l'hydrogène. Un noyau de deutérium (²H) et un noyau de tritium (³H) fusionnent pour donner un noyau d'hélium He (Z = 2), tout en éjectant un neutron. 1.1. Écrire l'équation de cette fusion nucléaire. 							
	1.2. La température du milieu (appe température si élevée est-elle né	ture du milieu (appelé plasma) doit être de l'ordre de 100 millions de degrés. Pourquoi une e si élevée est-elle nécessaire ?					
	L'énergie libérée au cours de cette	réaction de fusion r	nucléaire est de	$E_1 = 17,6 \text{ Me}$	eV.		

1.3. Calculer l'énergie libérée E_{L1} par nucléon de matière (en MeV/nucléon) participant à la réaction.

|--|

	ac	i constitue le « combustible nucléaire ». Certains produits de fission sont des noyaux radioactifs à forte tivité et dont la demi-vie peut être très longue.
		ne équation de réaction possible est : ${}_{0}^{1}$ n + ${}_{92}^{235}$ U \longrightarrow ${}_{54}^{139}$ Xe + ${}_{98}^{94}$ Sr + 3 ${}_{0}^{1}$ n
	2.1.	Calculer, en u, la variation de masse Δm lors de cette réaction.
	2.2.	Montrer que l'énergie libérée lors de chaque fission est $E_2 \approx 179 \text{ MeV}$.
	2.3.	Calculer l'énergie libérée E _{1.2} par nucléon de matière (en MeV/nucléon) participant à la réaction.
3.	<u>Conc</u> 3.1.	
	Le m Le me	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. <u>éthanol</u> (2 points) ethanol a pour formule brute : CH ₄ O
· • 1)	Le m Le me Donn	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. <u>éthanol</u> (2 points) ethanol a pour formule brute : CH ₄ O er ci-contre la <u>formule développée</u> du méthanol.
• 1)	Le m Le me Donn	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. <u>éthanol</u> (2 points) ethanol a pour formule brute : CH ₄ O
· • 1)	Le mo Donn Déter	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. <u>éthanol</u> (2 points) ethanol a pour formule brute : CH ₄ O er ci-contre la <u>formule développée</u> du méthanol.
• 1)	Le mo Donn Déter Quell	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. <u>Éthanol (2 points)</u> Ethanol a pour formule brute : CH ₄ O er ci-contre la <u>formule développée</u> du méthanol. Eminer sa masse molaire M. <u>Données</u> : M(C) = 12,0 g.mol ⁻¹ ; M(H) = 1,0 g.mol ⁻¹ ; M(O) = 16,0 g.mol ⁻¹
• 1) 2)	Le mo Donn Déter Quell	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. Éthanol (2 points) Ethanol a pour formule brute : CH ₄ O er ci-contre la <u>formule développée</u> du méthanol. Eminer sa masse molaire M. <u>Données</u> : M(C) = 12,0 g.mol ⁻¹ ; M(H) = 1,0 g.mol ⁻¹ ; M(O) = 16,0 g.mol ⁻¹ et masse m de méthanol a-t-on dissout pour préparer V = 50 mL d'une solution aqueuse de méthanol de
1. • 1)	Le mo Donn Déter Quell	Conclure en indiquant le ou les avantages que présenterait l'utilisation de la fusion nucléaire par rapport fission pour la production d'électricité dans les centrales nucléaires. <u>éthanol (2 points)</u> ethanol a pour formule brute : CH ₄ O er ci-contre la <u>formule développée</u> du méthanol. miner sa masse molaire M. <u>Données</u> : M(C) = 12,0 g.mol ⁻¹ ; M(H) = 1,0 g.mol ⁻¹ ; M(O) = 16,0 g.mol ⁻¹ ethanol a-t-on dissout pour préparer V = 50 mL d'une solution aqueuse de méthanol de

• Actuellement, les centrales nucléaires utilisent l'énergie libérée par des réactions de fission de l'uranium 235,

IV. Nomenclature (4 points)

1. Les alcanes et alcools

1.1. Pour les 4 premiers alcanes linéaires, nommer celui-ci puis donner sa formule brute et sa formule semi-développée (sauf pour le 1^{er}) dans le tableau ci-dessous.

Nom de l'alcane	Formule brute	Formule semi-développée

1.2. Nommer les molécules suivantes :

	140mmer les molecules survantes.		
a	CH ₃ CH CH ₂ CH CH ₃ Nom:	b	CH ₃ H ₃ C—C—CH ₂ CH ₃ CH ₃
c	CH ₂ OH CH ₂ CH ₂ Nom:	d	OH CH ₃ CCH CCH ₃ CCH ₃ Nom:

1.3. Donner la formule topologique des molécules a et d.

a	d	

V. Liquide de refroidissement : l'éthylène glycol (4 points + Bonus 1 point) L'éthylène glycol (formule ci-contre) est couramment utilisé dans les liquides de refroidissement des automobiles et des avions. HO 1) A quelle famille appartient cette molécule? 2) **Bonus** : Quel est le nom de l'éthylène glycol dans la nomenclature officielle ? 3) Quel est le nom de l'alcane contenant le même nombre d'atomes de carbone que l'éthylène glycol? 4) Représenter la formule semi-développée de l'éthanol. 5) Expliquer l'écart entre les températures d'ébullition de l'alcane (-89°C), de l'éthanol (79°C) et de l'éthylène glycol (198°C). 6) Avant les années 1960, l'eau était utilisée comme liquide de refroidissement dans les moteurs. Quel avantage présente l'utilisation de l'éthylène glycol par rapport à l'eau ?