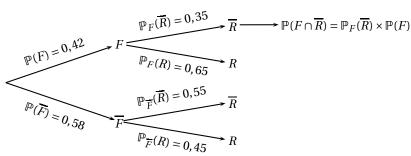
✓ Corrigé du Baccalauréat ES Métropole–La Réunion 24 juin 2015

EXERCICE 1 6 points

Commun à tous les candidats Partie A

1.



- **2.** $\mathbb{P}(F \cap \overline{R}) = \mathbb{P}_F(\overline{R}) \times \mathbb{P}(F) = 0,65 \times 0,42 = 0,273$
- 3. En utilisant la formule des probabilités totales, nous avons :

$$\mathbb{P}(R) = \mathbb{P}(R \cap F) + \mathbb{P}\left(R \cap \overline{F}\right)$$

$$= \mathbb{P}_F(R) \times \mathbb{P}(F) + \mathbb{P}_{\overline{F}}(R) \times \mathbb{P}\left(\overline{F}\right)$$

$$= 0,65 \times 0,42 + 0,45 \times 0,58$$

$$= 0,273 + 0,261$$

$$= 0,534$$

Partie B

Ici *X* suit la loi $\mathcal{N}(\mu, \sigma^2)$, avec $\mu = 48$ et $\sigma = 10$.

1. Nous calculons ici:

$$\mathbb{P}(X > 36) = \mathbb{P}(36 < X \le 48) + \mathbb{P}(X > 48) \qquad \text{(C'est une loi continue, et les deux évènements sont incompatibles)}$$

$$= \mathbb{P}(36 \le X \le 48) + \mathbb{P}(X \ge 48) \qquad \text{(C'est une loi continue)}$$

$$\approx 0,3849 + 0,5 \qquad \text{(le 1 est obtenu en utilisant la calculatrice, le 2 vaut 0,5)}$$

$$\approx 0,885 \qquad \text{C'est la moitié de l'aire totale sous la courbe)}$$
En effet:
$$x = 48$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

$$0,04$$

2. Nous calculons ici:

$$\mathbb{P}_{X>3\times12}(X<5\times12) = \mathbb{P}_{X>36}(X\leqslant60) \quad \text{(C'est une loi continue)} \\ = \frac{\mathbb{P}(36\leqslant X\leqslant60)}{\mathbb{P}(X\geqslant36)} \\ \approx \frac{0.76986}{0.884930} \\ \approx 0.870$$

partie C

- 1. Nous savons que:
 - p = 0.3 la proportion.
 - n = 1500 et $n \ge 30$
 - $n \times p = 450 \text{ et } 450 \ge 5$
 - $n \times (1-p) = 1050$ et $1050 \ge 5$.

L'intervalle de fluctuation asymptotique au seuil de 95 % de la fréquence vaut :

$$I = \left[p - 1,96 \times \frac{\sqrt{p(1-p)}}{\sqrt{n}} \; ; \; p + 1,96 \times \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

En effectuant les calculs, nous obtenons :

$$I = [0,276; 0,323].$$

2. La fréquence observée pour l'échantillon vaut : $f = \frac{430}{1500} \approx 0,287$. Ici $f \in I$, p = 0,3 est donc acceptable.

EXERCICE 2 5 points candidats n'ayant pas suivi l'enseignement de spécialité

1. $u_3 = 2000 \times 1,008^2 \approx 2032,13$. Le coût après 30 m de forage est de 2032,13 €. Le coût total est donc à peu près égal à :

2000 + 2016 + 2032, 13 soit au centime près 6 048, 13 \in .

2. a. Nous pouvons calculer :

$$u_{n+1} = 2000 \times 1,008^{n+1-1}$$

$$= 2000 \times 1,008^{n-1+1}$$

$$= 2000 \times 1,008^{n-1} \times 1,008$$

$$= u_n \times 1,008$$

 (u_n) est géométrique de raison : q = 1,008.

b.
$$u_{n+1} = 1,008 \times u_n \Leftrightarrow u_{n+1} = \left(1 + \frac{0,8}{100}\right) \times u_n.$$

Pour passer de n à n+1 le coefficient multiplicateur vaut : $\left(1+\frac{0,8}{100}\right)$.

Le pourcentage d'augmentation permettant de passer de n à n+1 vaut donc : t=0.8 %.

3.	a.	valeurs de i		2	3	4	5
		Valeur de <i>u</i>	2000	2016	2 032,128	2 048,38	2 064,77
		Valeur de S	2 000	4 016	6 048,128	≈8 096,51	≈10161,29

b. La sortie donne : $\approx 10161,29$. C'est le coût de forage à 50 mètres de profondeur.

4. a. On recherche le plus grand entier *n* pour lequel :

$$S_{n} \leqslant 125\,000$$

$$-250\,000 + 250\,000 \times 1,08^{n} \leqslant 125\,000$$

$$250\,000 \times 1,008^{n} \leqslant 375\,000$$

$$1,008^{n} \leqslant \frac{375}{250}$$

$$\ln(1,008^{n}) \leqslant \ln\left(\frac{375}{250}\right)$$

$$n\ln1,008 \leqslant \ln\left(\frac{375}{250}\right)$$

$$n \leqslant \ln\left(\frac{375}{250}\right) \div \ln(1,008)$$

$$n \leqslant 50,885$$

Le coût est supérieur à $125\,000$ pour n plus grand que 50. La profondeur maximale est donc égale à 500 mètres.

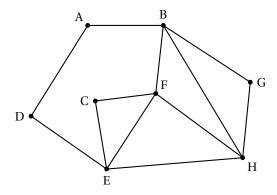
b. Voici l'algorithme modifié :

Variables: n: dans \mathbb{N} u, S: dans \mathbb{R} Initialisation: u prend la valeur 2 000 s prend la valeur 2 000 s prend la valeur 1 Traitement: tant que $s \le 125000$ faire u prend la valeur u * 1,008 s prend la valeur s + u s prend la valeur s + us prend la valeur s + u

EXERCICE 2 candidats ayant suivi l'enseignement de spécialitée

5 points

Partie A



1. a. Ce graphe Γ possède 8 sommets et c'est un graphe connexe, la chaîne A-B-G-H-F-C-E-D passe par tous les sommets, deux sommets quelconques seront toujours reliés par une chaîne.

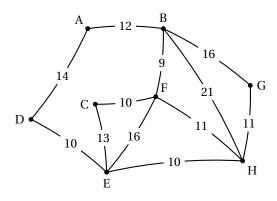
b. Tableau des sommets degrés

Sommets	Α	В	С	D	Е	F	G	Н
Degrés	2	4	2	2	4	4	2	4

Le graphe a tous ses sommets de degré pair, étant connexe, il admet un cycle Eulérien d'après le théorème d'Euler, donc à fortiori une chaîne eulérienne.

2. Le nombre de chemin de longueur 3 reliant E à B est donné par $M_{25}^{(3)}=5$, il y 5 chemins de longueur 3 reliant E à B.

Partie B



- a. Nous avons déjà répondu à la question dans la partie A 1. b.
 Voici un exemple de cycle : A-B-F-C-E-F-H-B-G-H-E-D-A .(nous avons utilisé ici l'algorithme d'Euler).
 - b. Nous cherchons ici tous les chemins de longueurs 3 reliant le refuge E au refuge B. Il y en a 5 (d'après la question 2. b. de la partie A).
 Voici les chemins possibles : E-C-F-B E-H-F-B E-D-A-B E-H-G-B E-F-H-B.
- **2.** Pour déterminer la distance la plus courte entre A et H, nous utiliserons l'algorithme de Dijkstra :

Α	В	С	D	Е	F	G	Н	select
0	∞	A(0)						
	12 (A)	∞	14 (A)	∞	∞	∞	∞	B(12)
		∞	14 (A)	∞	21 (B)	28 (B)	33 (B)	D(14)
		∞		24 (D)	21 (B)	28 (B)	33 (B)	F(21)
		31 (F)		24 (D)		28 (B)	32 (F)	E(24)
		31 (F)				28 (B)	32 (F)	G(28)
		31 (F)					32 (F)	C(31)
							32 (F)	H(32)

La distance la plus courte vaut : 32

La chaîne qui la réalise vaut : A-B-F-H.

L'itinéraire le plus court reliant A à H fait donc 32 km et passe par les sommets suivants : A-B-F-H.

EXERCICE 3 6 points

commun à tous les candidats

Partie A

1. a. f'(-3) = 0, en effet au point d'abscisse -3 la tangente à la courbe est horizontale.

b.
$$f(0) = 2$$
 et $f'(0) = -3$.

2. Nous savons que : $f(x) = a + (x + b)e^{-x}$.

a. f est dérivable sur \mathbb{R} et : $f'(x) = 0 + 1 \times e^{-x} - e^{-x} \times (x + b)$.

b. Comme:

•
$$f'(-3) = 0 \Rightarrow 1 \times e^{-x} - e^{-0} \times (0+b) = -3 \Rightarrow 1-b = -3$$
.

•
$$f(0) = 2 \Rightarrow a + (0 + b) \times e^{-0} = 2 \Rightarrow a + b = 2$$
.

c. De la question précédente, nous déduisons le système suivant et sa résolution :

$$\begin{cases} a+b=2 \\ 1-b=-3 \end{cases} \longleftrightarrow \begin{cases} a=2-b \\ b=4 \end{cases} \longleftrightarrow \begin{cases} a=-2 \\ b=4 \end{cases}$$

Conclusion : $f(x) = -2 + (x + 4)e^{-x}$.

Partie B

1. La fonction f est dérivable sur \mathbb{R} en tant que somme de fonctions dérivables.

$$f'(x) = e^{-x} - e^{-x} \times (x+4)$$

= $e^{-x} (1 - (x+4))$
= $e^{-x} (-x-3)$

Comme : $e^{-x} > 0$ pour tout $x \in \mathbb{R}$, le signe de f'(x) ne dépendra que de : -x - 3.

Nous en déduisons le tableau de signes de f'(x) et le tableau de variations de f:

x	-4	-3	3
-x-3	+	0	_
e^{-x}	+	0	+
f'(x)	+	0	_
f	-2	$-2+e^3$	$-2+7e^{-3}$

Avec les valeurs suivantes :

•
$$f(-4) = -2 + (-4 + 4)e^4 = -2$$

•
$$f(-3) = -2 + (-3 + 4)e^3 = -2 + e^3 \approx 18,09$$

•
$$f(3) = -2 + (3+4)e^{-3} \approx -1,651$$

2. • sur [-3; 3], f est strictement décroissante.

• f est dérivable sur \mathbb{R} , elle est donc continue sur \mathbb{R} et donc sur [-3; 3].

• 0 est compris entre f(-3) et f(3). Nous les avons calculé ci-dessus.

D'après le théorème des valeurs intermédiaires et la stricte monotonie de la fonction f sur [-3; 3], f(x) = 0 admet une solution unique α dans cet intervalle.

Avec la calculatrice, nous trouvons : $\alpha \approx 0.895 \approx 0.90$.

3. a. Sur l'intervalle [-3; 0], la fonction admet un minimum atteint pour x = 0 et qui vaut : f(0) = 2.

On en déduit que f(x) > 0 pour tout $x \in [-3; 0]$.

Ainsi l'aire comprise entre les axes d'équations x = -3, x = 0, l'axe des abscisses et la courbe représentative de f vaut :

$$\mathscr{A} = \int_{-3}^{0} f(x) \mathrm{d}x.$$

b. Une primitive de f vaut F, d'après la copie d'écran donnée dans le sujet. En effet :

$$F'(x) = x \times e^{-x} + 4 \times e^{-x} - 2 = (x+4) \times e^{-x} - 2 = -2 + (x+4)e^{-x}$$
.

Calculons ensuite:

•
$$F(-3) = -2 \times (-3) + (+3-5)e^{+3} = -2e^3 + 6$$

•
$$F(0) = -2 \times 0 + (-0 - 5)e^{-0} = -5$$

Ainsi:

$$\mathcal{A} = \int_{-3}^{0} f(x) dx$$

$$= [F(x)]_{-3}^{0}$$

$$= F(0) - F(-3)$$

$$= -5 - (-2e^{3} + 6)$$

$$= 2e^{3} - 11$$

$$\approx 29,17 \text{ U.A.}$$

EXERCICE 4 3 points

Commun à tous les candidats

Cette fonction est deux fois dérivables sur \mathbb{R}_+^*

•
$$f'(x) = 3 - 3\ln x - 3x \times \frac{1}{x} = -3\ln x$$
.

$$\bullet \quad f''(x) = -\frac{3}{x}.$$

Sur \mathbb{R}_+^* , f''(x) < 0, f' est donc strictement décroissante sur \mathbb{R}_+^* . Nous en déduisons que f est concave sur \mathbb{R}_+^* .

Toutes ses tangentes sont donc au-dessus de \mathscr{C}_f sur \mathbb{R}_+^* , plus particulièrement la tangente T au point d'abscisse 1.