Durée: 3 heures

∽ Corrigé du baccalauréat ES Centres étrangers 16 juin 2011 ∾

EXERCICE 1 4 points
Commun à tous les candidats

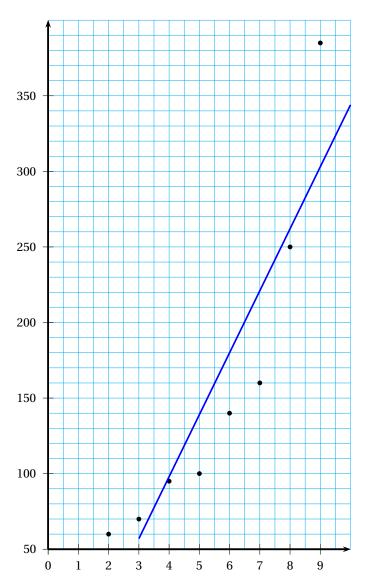
- 1. Le nombre dérivé de f en 0 est : 1 : le coefficient directeur de la droite d'équation y = 1x + 3 est égal à 1.
- **2.** On voit que l'aire de la surface limitée par la courbe, l'axe des abscisses et les droites verticales d'équation x = -1 et x = 0 est un peu supérieure à 2.
- **3.** La croissance de F dépend du signe de sa dérivée f; f est positive sur [-1; 5], donc F est croissante sur cet intervalle.
- **4.** On a $g'(x) = f'(x)e^{f(x)}$, or $e^{f(x)} > 0$ quel que soit le réel x, donc f' et g' ont le même signe donc f et g ont les mêmes variations.

EXERCICE 2 5 points

Candidat n'ayant pas suivi l'enseignement de spécialité

1. Le taux d'évolution entre 2002 et 2009 est égal à $\frac{385-60}{60} = \frac{325}{60} \approx 5,4 \text{ à 0,1 près.}$

2.



- 3. On cherche dans un premier temps un ajustement affine.
 - **a.** La calculatrice donne y = 41x 66.
 - **b.** 2010 correspond au rang x = 10; le nombre estimé d'internautes devrait être de $41 \times 10 66 = 344$.

4. a. x_i 2 3 4 5 6 7 8 9 $z_i = \ln y_i$ 4,094 4,249 4.554 4,605 4,942 5,075 5,521 5,953

- **b.** La calculatrice livre z = 0.253x + 3.481 (les coefficients sont arrondis au millième).
- **c.** On a pour y > 0, $z = \ln y \iff y = e^z = e^{0.253x + 3.481} = e^{0.253x} \times e^{3.481}$. Or $e^{3.481} \approx 32.492$.

Finalement : $y = 32,492e^{0,253x}$

d. 2012 correspond au rang 12. Avec cet ajustement exponentiel le nombre estimé d'internautes est égal à :

 $y = 32,5 \times e^{0,253 \times 12} \approx 677$ millions.

EXERCICE 2 5 points Candidat ayant suivi l'enseignement de spécialité

Partie A

1. Voir la figure à la fin.

Les coordonnées des points de la courbe vérifient $z = 10 = \frac{1}{4}xy \iff 40 = xy \iff y = \frac{40}{x}$ avec $0 < x \le 10$ et $0 \le y \le 8$.

C'est une branche d'hyperbole.

2. Voir la surface.

$$C(x; 5) \in \Gamma \iff 5 = \frac{40}{x} \iff x = \frac{40}{5} = 8.$$

Donc C(8:5:10).

3. $\frac{1}{4} \times 6 \times 2 = \frac{12}{3} = 4$: le point B de coordonnées (6 ; 2 ; 3) appartient à la surface (S).

Partie B

1. On a donc x = 6 et y = 6, d'où $f(6; 6) = \frac{1}{4} \times 6 \times 6 = 9$.

La somme allouée sera égale à 900 €.

2. a. Les nombres *x* et *y* vérifient :

$$\begin{cases} f(x; y) &= \frac{1}{4}xy \\ y &= 12-x \end{cases} \Rightarrow f(x; y) = \frac{1}{4}x(12-x) = 3x - \frac{1}{4}x^2 = h(x).$$

b. On a $0 \le x \le 10$ et $0 \le y \le 8$, soit comme y = 12 - x, $0 \le 12 - x \le 8 \iff$

 $-12 \leqslant -x \leqslant -4 \iff 4 \leqslant x \leqslant 12$ et finalement compte tenu de la première condition sur x, on étudie h sur l'intervalle [4; 10].

h(x) est un trinôme du second degré : son extremum est atteint pour

$$x = -\frac{b}{2a} = -\frac{3}{2 \times \left(-\frac{1}{4}\right)} = 6$$
 qui appartient bien à l'intervalle [4; 10].

c. La somme allouée la plus élevée est égale à $h(6) = 18 - \frac{36}{4} = 18 - 9 = 9$ soit $900 \in$.

Centres étrangers 2 16 juin 2011

EXERCICE 3 5 points

Commun à tous les candidats

Partie A

1. On a $\lim_{x \to \frac{3}{2}} -2x + 3 = 0$, donc $\lim_{x \to \frac{3}{2}} \ln(-2x + 3) = -\infty$ et comme $\lim_{x \to \frac{3}{2}} 2x = 3$, on a finalement : $\lim_{x \to \frac{3}{2}} f(x) = -\infty$: la droite verticale d'équation $x = \frac{3}{2}$ est asymptote à la représentation gra-

phique de f.

2. a. Sur I, on a :

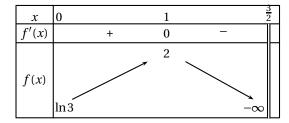
$$f'(x) = \frac{-2}{-2x+3} + 2 = \frac{-2-4x+6}{-2x+3} = \frac{4-4x}{-2x+3} = \frac{4(1-x)}{-2x+3}.$$

b. Sur I, -2x + 3 > 0, le signe de f'(x) est donc celui de 1 - x.

Donc sur [0; 1], 1 - x > 0, donc $f'(x) \ge 0$ et

sur $[1; \frac{3}{2}], f'(x) \leq 0.$

Avec $f(0) = \ln 3$, f(1) = 2 il suit le tableau de variations suivant de f:



- **3.** a. Sur l'intervalle [0; 1], la fonction f continue car dérivable sur cet intervalle est strictement croissante de $\ln 3 \approx 1, 1$ à 2 : il existe donc un réel unique $\alpha \in [0; 1]$ tel que $f(\alpha) = 1, 9$.
 - **b.** La calculatrice donne :

 $f(0,7) - \approx 1,87$ et $f(0,8) \approx 1,94$, donc $0,7 < \alpha < 0,8$;

 $f(0,74) \approx 1,899$ et $f(0,75) \approx 1,906$, donc $0,74 < \alpha < 0,75$;

 $f(0,741) \approx 1,899$ et $f(0,742) \approx 1,9001$, donc $0,741 < \alpha < 0,742$.

Une valeur approchée à 10^{-2} près par défaut de α est donc 0,74.

Partie B Application de la partie A

- 1. a. On a vu que le maximum de f entre 0 et 1,5 donc aussi entre 0,2 et 1,2 est égal à f(1) = 2.
 - **b.** Le bénéfice est alors de 200 000 €.
- **2.** On a vu que $f(\alpha) = 1,9$, ce qui correspond à 190 000 euros.

Le bénéfice dépasse 190 000 euros quand la distance dépasse α , soit environ 7,4 km ... mais le bénéfice baisse ensuite à partir de 10 km et atteint à nouveau 190 000 euros quand $f(\beta) = 1,9$ avec $\beta \in [1; 1, 2]$.

La calculatrice donne $\beta \approx 1,192$, donc finalement bénéfice dépassera 190 000 euros si les éoliennes sont placées à une distance comprise entre 7,4 et 11,92 km.

6 points **EXERCICE 4**

Commun à tous les candidats

- 1. Voir sur l'annexe.
- **2. a.** On lit sur la deuxième branche : $p_C(F) = 0, 2$.

b. On lit sur la quatrième branche : $p_{\overline{\mathbb{C}}}(M) = 0, 4$.

3. On a :
$$p(C \cap F) = 0.9 \times 0.2 = 0.18$$
;

De même
$$p(\overline{C} \cap F) = 0, 1 \times 0, 6 = 0, 06.$$

D'après la loi des probabilités totales :

$$p(F) = p(C \cap F) + p(\overline{C} \cap F) = 0,18 + 0,08 = 0,24.$$

4. Il faut trouver:
$$p_{\rm F}({\rm C}) = \frac{p({\rm F} cap{\rm C})}{p({\rm F})} = \frac{0.9 \times 0.2}{0.24} = \frac{0.18}{0.24} = \frac{18}{24} = \frac{3}{4} = 0.75.$$
5. a.

5. a.

Valeur : x_i	5	2	3
Probabilité associée : p_i	0,9	0,06	0,04

- **b.** On a $E(X) = 5 \times 0.9 + 2 \times 0.06 + 3 \times 0.04 = 4.5 + 0.12 + 0.12 = 4.74$. La valeur moyenne d'une barquette vendue est de 4,74 €.
- c. Le résultat précédent montre que pour 150 barquettes vendues avec un gain moyen de 4,74 €, le gain sera de :

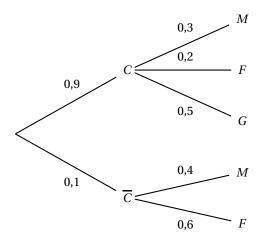
$$150 \times 4,74 = 711$$
 (€).

Centres étrangers 4 16 juin 2011

Annexe

(à rendre avec la copie)

Exercice 4



Annexe 1 (à rendre avec la copie)

Exercice 2 (enseignement de spécialité)

