Baccalauréat S (obligatoire) Polynésie septembre 2008

EXERCICE 1 4 points

On rappelle que la probabilité d'un évènement A sachant que l'évènement B est réalisé se note $p_B(A)$.

Une urne contient au départ 30 boules blanches et 10 boules noires indiscernables au toucher.

On tire au hasard une boule de l'urne :

- si la boule tirée est blanche, on la remet dans l'urne et on ajoute *n* boules blanches supplémentaires.
- si la boule tirée est noire, on la remet dans l'urne et on ajoute *n* boules noires supplémentaires.

On tire ensuite au hasard une seconde boule de l'urne.

On note:

- B₁ l'évènement : « on obtient une boule blanche au premier tirage »
- B₂ l'évènement : « on obtient une boule blanche au second tirage »
- A l'évènement : « les deux boules tirées sont de couleurs différentes ».
- **1.** Dans cette question, on prend n = 10.
 - **a.** Calculer la probabilité $p(B_1 \cap B_2)$ et montrer que $p(B_2) = \frac{3}{4}$.
 - **b.** Calculer $p_{B_2}(B_1)$.
 - **c.** Montrer que $p(A) = \frac{3}{10}$.
- **2.** On prend toujours n = 10.

Huit joueurs réalisent l'épreuve décrite précédemment de manière identique et indépendante.

On appelle X la variable aléatoire qui prend pour valeur le nombre de réalisations de l'évènement A.

- **a.** Déterminer p(X = 3). (On donnera la réponse à 10^{-2} près).
- **b.** Déterminer l'espérance mathématique de la variable aléatoire X.
- **3.** Dans cette question n est un entier supérieur ou égal à 1.

Existe-t-il une valeur de *n* pour laquelle $p(A) = \frac{1}{4}$?

EXERCICE 2 5 points

On donne la propriété suivante :

« par un point de l'espace il passe un plan et un seul orthogonal à une droite donnée »

Sur la figure donnée en annexe, on a représenté le cube ABCDEFGH d'arête 1. On a placé :

les points I et J tels que
$$\overrightarrow{BI} = \frac{2}{3} \overrightarrow{BC}$$
 et $\overrightarrow{EJ} = \frac{2}{3} \overrightarrow{EH}$.
le milieu K de [I]].

On appelle P le projeté orthogonal de G sur le plan (FIJ).

Partie A

Démontrer que le triangle FIJ est isocèle en F.
En déduire que les droites (FK) et (IJ) sont orthogonales.

On admet que les droites (GK) et (IJ) sont orthogonales.

Baccalauréat S A. P. M. E. P.

- 2. Démontrer que la droite (IJ) est orthogonale au plan (FGK).
- 3. Démontrer que la droite (IJ) est orthogonale au plan (FGP).
- 4. a. Montrer que les points F, G, K et P sont coplanaires.
 - **b.** En déduire que les points F, P et K sont alignés.

Partie B

L'espace est rapporté au repère orthonormal $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$. On appelle N le point d'intersection de la droite (GP) et du plan (ADB). On note (x; y; 0) les coordonnées du point N.

- 1. Donner les coordonnées des points F, G, I et J.
- **2. a.** Montrer que la droite (GN) est orthogonale aux droites (FI) et (FJ).
 - **b.** Exprimer les produits scalaires $\overrightarrow{GN} \cdot \overrightarrow{FI}$ et $\overrightarrow{GN} \cdot \overrightarrow{FJ}$ en fonction de x et y.
 - c. Déterminer les coordonnées du point N.
- 3. Placer alors le point P sur la figure en annexe.

EXERCICE 3 5 points

Les parties A et B sont indépendantes.

Partie A

On considère l'ensemble (E) des suites (x_n) définies sur $\mathbb N$ et vérifiant la relation suivante :

pour tout entier naturel *n* non nul, $x_{n+1} - x_n = 0.24x_{n-1}$.

1. On considère un réel λ non nul et on définit sur \mathbb{N} la suite (t_n) par $t_n = \lambda^n$. Démontrer que la suite (t_n) appartient à l'ensemble (E) si et seulement si λ est solution de l'équation $\lambda^2 - \lambda - 0.24 = 0$.

En déduire les suites (t_n) appartenant à l'ensemble (E).

On admet que (E) est l'ensemble des suites (u_n) définies sur $\mathbb N$ par une relation de la forme :

$$u_n = \alpha(1,2)^n + \beta(-0,2)^n$$
 où α et β sont deux réels.

- 2. On considère une suite (u_n) de l'ensemble (E). Déterminer les valeurs de α et β telles que $u_0 = 6$ et $u_1 = 6, 6$.
 - En déduire que, pour tout entier naturel n, $u_n = \frac{39}{7}(1,2)^n + \frac{3}{7}(-0,2)^n$.
- **3.** Déterminer $\lim_{n\to+\infty} u_n$.

Partie B

On considère la suite (v_n) définie sur $\mathbb N$ par :

$$v_0 = 6$$
 et, pour tout entier naturel n , $v_{n+1} = 1,4v_n - 0,05v_n^2$

- **1.** Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 1,4x 0,05x^2$.
 - **a.** Étudier les variations de la fonction f sur l'intervalle [0; 8].
 - **b.** Montrer par récurrence que, pour tout entier naturel n, $0 \le v_n < v_{n+1} \le 8$.
- **2.** En déduire que la suite (v_n) est convergente et déterminer sa limite ℓ .

Baccalauréat S A. P. M. E. P.

EXERCICE 4 6 points

On considère la fonction f définie sur $\mathbb R$ par

$$f(x) = \ln\left(e^x + 2e^{-x}\right).$$

La courbe (\mathscr{C}) représentative de la fonction f dans un repère orthogonal est donnée en annexe.

Partie A - Étude de fonction f.

- 1. Montrer que, pour tout réel x, $f(x) = x + \ln(1 + 2e^{-2x})$. On admet que, pour tout réel x, $f(x) = -x + \ln(2 + e^{2x})$.
- **2.** Calculer $\lim_{x \to +\infty} f(x)$ et montrer que la droite (d) d'équation y = x est asymptote à (\mathscr{C}) .

Étudier la position relative de (\mathscr{C}) et de (d).

- **3.** Calculer $\lim_{x \to -\infty} f(x)$ et montrer que la droite (d') d'équation $y = -x + \ln 2$ est asymptote à (\mathscr{C}).
- **4.** Étudier les variations de la fonction f. Montrer que le minimum de la fonction f est égal à $\frac{3}{2}\ln 2$.
- **5.** Tracer les droites (d) et (d') sur la feuille annexe.

Partie B - Encadrement d'une intégrale.

On pose
$$I = \int_{2}^{3} [f(x) - x] dx$$
.

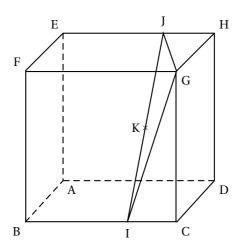
- 1. Donner une interprétation géométrique de *I*.
- **2.** Montrer que, pour tout $X \in [0; +\infty[$, $\ln(1+X) \leq X$.
- **3.** En déduire que $0 \le I \le \int_2^3 2e^{-2x} dx$ et donner un encadrement de I d'amplitude 0,02.

Baccalauréat S A. P. M. E. P.

Annexe

Cette page sera complétée et remise avec la copie à la fin de l'épreuve.

EXERCICE 2



EXERCICE 4

