∽ Baccalauréat S Nouvelle-Calédonie 17 novembre 2016 ∾

EXERCICE 1 4 points

Commun à tous les candidats

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par

$$f(x) = xe^{-x} - 0, 1.$$

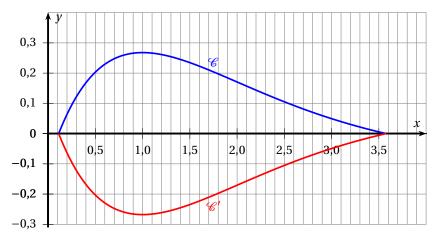
- 1. Déterminer la limite de f en $+\infty$.
- **2.** Étudier les variations de f sur $[0; +\infty[$ et dresser le tableau de variations.
- **3.** Démontrer que l'équation f(x) = 0 admet une unique solution notée α sur l'intervalle [0; 1].

On admet l'existence du nombre réel strictement positif β tel que $\alpha < \beta$ et $f(\beta) = 0$.

On note $\mathscr C$ la courbe représentative de la fonction f sur l'intervalle $[\alpha;\beta]$ dans un repère orthogonal et $\mathscr C'$ la courbe symétrique de $\mathscr C$ par rapport à l'axe des abscisses.

L'unité sur chaque axe représente 5 mètres.

Ces courbes sont utilisées pour délimiter un massif floral en forme de flamme de bougie sur lequel seront plantées des tulipes.



4. Démontrer que la fonction F, définie sur l'intervalle $[\alpha; \beta]$ par

$$F(x) = -(x+1)e^{-x} - 0.1x$$

est une primitive de la fonction f sur l'intervalle $[\alpha; \beta]$.

5. Calculer, en unités d'aire, une valeur arrondie à 0,01 près de l'aire du domaine compris entre les courbes $\mathscr C$ et $\mathscr C'$.

On utilisera les valeurs arrondies à 0,001 près suivantes : $\alpha \approx$ 0,112 et $\beta \approx$ 3,577.

6. Sachant que l'on peut disposer 36 plants de tulipes par mètre carré, calculer le nombre de plants de tulipes nécessaire à la réalisation de ce massif.

EXERCICE 2 4 points

Commun à tous les candidats

La société « Bonne Mamie » utilise une machine pour remplir à la chaîne des pots de confiture. On note *X* la variable aléatoire qui à chaque pot de confiture produit associe la masse de confiture qu'il contient, exprimée en grammes.

Dans le cas où la machine est correctement réglée, on admet que X suit une loi normale de moyenne $\mu = 125$ et d'écart-type σ .

1. a. Pour tout nombre réel t positif, déterminer une relation entre

 $P(X \le 125 - t)$ et $P(X \ge 125 + t)$.

 $\textbf{b.} \ \ \text{On sait que 2,3 \% des pots de confiture contiennent moins de 121 grammes de confiture. } \\ En utilisant la relation précédente, déterminer$

 $P(121 \le X \le 129)$.

2. Déterminer une valeur arrondie à l'unité près de σ telle que

 $P(123 \le X \le 127) = 0,68.$

Dans la suite de l'exercice, on suppose que $\sigma = 2$.

- **3.** On estime qu'un pot de confiture est conforme lorsque la masse de confiture qu'il contient est comprise entre 120 et 130 grammes.
 - **a.** On choisit au hasard un pot de confiture de la production. Déterminer la probabilité que ce pot soit conforme. On donnera le résultat arrondi à 10^{-4} près.
 - **b.** On choisit au hasard un pot parmi ceux qui ont une masse de confiture inférieure à 130 grammes. Quelle est la probabilité que ce pot ne soit pas conforme? On donnera le résultat arrondi à 10^{-4} près.
- **4.** On admet que la probabilité, arrondie à 10^{-3} près, qu'un pot de confiture soit conforme est 0.988

On choisit au hasard 900 pots dans la production. On constate que 871 de ces pots sont conformes. Au seuil de 95 % peut-on rejeter l'hypothèse suivante : « La machine est bien réglée »?

EXERCICE 3 4 points

Commun à tous les candidats

On se place dans le plan complexe rapporté au repère $(O; \overrightarrow{u}, \overrightarrow{v})$.

Soit f la transformation qui à tout nombre complexe z non nul associe le nombre complexe f(z) défini par :

$$f(z) = z + \frac{1}{z}.$$

On note M le point d'affixe z et M' le point d'affixe f(z).

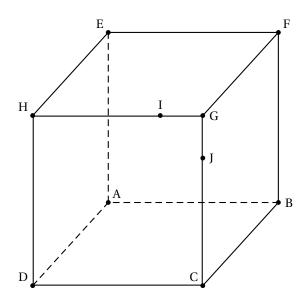
- 1. On appelle A le point d'affixe $a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.
 - **a.** Déterminer la forme exponentielle de *a*.
 - **b.** Déterminer la forme algébrique de f(a).
- **2.** Résoudre, dans l'ensemble des nombres complexes, l'équation f(z) = 1.
- **3.** Soit M un point d'affixe z du cercle $\mathscr C$ de centre O et de rayon 1.
 - **a.** Justifier que l'affixe z peut s'écrire sous la forme $z = e^{i\theta}$ avec θ un nombre réel.
 - **b.** Montrer que f(z) est un nombre réel.
- 4. Décrire et représenter l'ensemble des points M d'affixe z tels que f(z) soit un nombre réel.

EXERCICE 4 3 points

Commun à tous les candidats

On considère le cube ABCDEFGH représenté ci-dessous.

On définit les points I et J respectivement par $\overrightarrow{HI} = \frac{3}{4} \overrightarrow{HG}$ et $\overrightarrow{JG} = \frac{1}{4} \overrightarrow{CG}$.



- **1. Sur le document réponse donné en annexe, à rendre avec la copie**, tracer, sans justifier, la section du cube par le plan (IJK) où K est un point du segment [BF].
- **2. Sur le document réponse donné en annexe, à rendre avec la copie**, tracer, sans justifier, la section du cube par le plan (IJL) où L est un point de la droite (BF).
- **3.** Existe-t-il un point P de la droite (BF) tel que la section du cube par le plan (IJP) soit un triangle équilatéral? Justifier votre réponse.

Exercice 5 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

Un apiculteur étudie l'évolution de sa population d'abeilles. Au début de son étude, il évalue à 10 000 le nombre de ses abeilles.

Chaque année, l'apiculteur observe qu'il perd 20 % des abeilles de l'année précédente.

Il achète un nombre identique de nouvelles abeilles chaque année. On notera c ce nombre exprimé en dizaines de milliers.

On note u_0 le nombre d'abeilles, en dizaines de milliers, de cet apiculteur au début de l'étude.

Pour tout entier naturel n non nul, u_n désigne le nombre d'abeilles, en dizaines de milliers, au bout de la n-ième année. Ainsi, on a

 $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 0.8u_n + c$.

Partie A

On suppose dans cette partie seulement que c = 1.

1. Conjecturer la monotonie et la limite de la suite (u_n) .

- **2.** Démontrer par récurrence que, pour tout entier naturel n, $u_n = 5 4 \times 0, 8^n$.
- **3.** Vérifier les deux conjectures établies à la question 1. en justifiant votre réponse. Interpréter ces deux résultats.

Partie B

L'apiculteur souhaite que le nombre d'abeilles tende vers 100 000.

On cherche à déterminer la valeur de c qui permet d'atteindre cet objectif. On définit la suite (v_n) par, pour tout entier naturel n, $v_n = u_n - 5c$.

- 1. Montrer que la suite (v_n) est une suite géométrique dont on précisera la raison et le premier
- **2.** En déduire une expression du terme général de la suite (v_n) en fonction de n.
- **3.** Déterminer la valeur de *c* pour que l'apiculteur atteigne son objectif.

EXERCICE 5 5 points

Candidats avant suivi l'enseignement de spécialité

On observe la taille d'une colonie de fourmis tous les jours.

Pour tout entier naturel n non nul, on note u_n le nombre de fourmis, exprimé en milliers. dans cette population au bout du n-ième jour.

Au début de l'étude la colonie compte 5 000 fourmis et au bout d'un jour elle compte 5 100 fourmis. Ainsi, on a $u_0 = 5$ et $u_1 = 5, 1$.

On suppose que l'accroissement de la taille de la colonie d'un jour sur l'autre diminue de 10 % chaque jour.

En d'autres termes, pour tout entier naturel *n*,

$$u_{n+2} - u_{n+1} = 0,9(u_{n+1} - u_n).$$

- 1. Démontrer, dans ces conditions, que $u_2 = 5, 19$.
- **2.** Pour tout entier naturel n, on pose $V_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$ et $A = \begin{pmatrix} 1,9 & -0,9 \\ 1 & 0 \end{pmatrix}$.
 - **a.** Démontrer que, pour tout entier naturel n, on a $V_{n+1} = AV_n$. On admet alors que, pour tout entier naturel n, $V_n = A^n V_0$.
 - **b.** On pose $P = \begin{pmatrix} 0, 9 & 1 \\ 1 & 1 \end{pmatrix}$. On admet que la matrice P est inversible.

À l'aide de la calculatrice, déterminer la matrice P^{-1} .

En détaillant les calculs, déterminer la matrice D définie par $D = P^{-1}AP$.

c. Démontrer par récurrence que, pour tout entier naturel n, on a $A^n = PD^nP^{-1}$.

Pour tout entier naturel n, on admet que

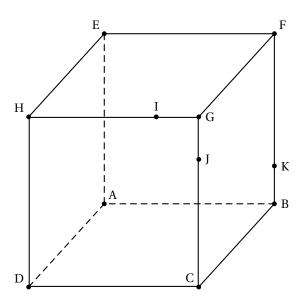
$$A^{n} = \begin{pmatrix} -10 \times 0, 9^{n+1} + 10 & 10 \times 0, 9^{n+1} - 9 \\ -10 \times 0, 9^{n} + 10 & 10 \times 0, 9^{n} - 9 \end{pmatrix}.$$

- **d.** En déduire que, pour tout entier naturel n, $u_n = 6 0.9^n$.
- 3. Calculer la taille de la colonie au bout du 10^e jour. On arrondira le résultat à une fourmi près.
- **4.** Calculer la limite de la suite (u_n) . Interpréter ce résultat dans le contexte.

À RENDRE AVEC LA COPIE

ANNEXE de l'exercice 4

Exercice 4, question 1



Exercice 4, question 2

