Durée: 4 heures

☞ Baccalauréat S Amérique du Nord 3 juin 2010 ∾

EXERCICE 1 4 points

Commun à tous les candidats

L'espace est rapporté à un repère orthonormal $(O, \vec{i}, \vec{j}, \vec{k})$. Les points A, B et C ont pour coordonnées respectives :

$$A(1; -2; 4)$$
 $B(-2; -6; 5)$ $C(-4; 0; -3)$.

- 1. (a) Démontrer que les points A, B et C ne sont pas alignés.
 - (b) Démontrer que le vecteur $\overrightarrow{n}(1;-1;-1)$ est un vecteur normal au plan (ABC).
 - (c) Déterminer une équation du plan (ABC).
- 2. (a) Déterminer une représentation paramétrique de la droite passant par le point O et orthogonale au plan (ABC).
 - (b) Déterminer les coordonnées du point O' projeté orthogonal du point O sur le plan (ABC).
- 3. On désigne par H le projeté orthogonal du point O sur La droite (BC).

Soit t le réel tel que $\overrightarrow{BH} = t \overrightarrow{BC}$.

- (a) Démontrer que $t = \frac{\overrightarrow{BO} \cdot \overrightarrow{BC}}{\left\| \overrightarrow{BC} \right\|^2}$.
- (b) En déduire le réel *t* et les coordonnées du point H.

EXERCICE 2 3 points

Commun à tous les candidats

Une urne contient des boules indiscernables au toucher.

20% des boules portent le numéro 1 et sont rouges.

Les autres portent le numéro 2 et parmi elles, 10 % sont rouges et les autres sont vertes.

- 1. On tire une boule au hasard. Quelle est la probabilité qu'elle soit rouge?
- 2. On a tiré une boule au hasard. Elle est rouge.

Montrer que la probabilité qu'elle porte le numéro 2 est égale à $\frac{2}{7}$.

3. Soit *n* un entier naturel supérieur ou égal à 2.

On effectue n tirages successifs d'une boule avec remise (après chaque tirage la boule est remise dans l'urne).

- (a) Exprimer en fonction de n la probabilité d'obtenir au moins une boule rouge portant le numéro 1 au cours des n tirages.
- (b) Déterminer l'entier *n* à partir duquel la probabilité d'obtenir au moins une boule rouge portant le numéro 1 au cours des *n* tirages est supérieure ou égale à 0,99.

EXERCICE 3 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

Le plan complexe est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$ d'unité graphique 2 cm. On réalisera une figure que l'on complétera tout au long de l'exercice.

On considère les points A d'affixe i, B d'affixe –2i et D d'affixe 1.

On appelle E le point tel que le triangle ADE soit équilatéral direct.

Soit f l'application qui à tout point M d'affixe z ($z \neq i$) associe le point M' d'affixe z' définie par :

$$z' = \frac{2z - i}{iz + 1}.$$

- 1. Démontrer que le point E a pour affixe $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)(1+i)$.
- 2. Exprimer sous forme algébrique l'affixe du point D' associé au point D par l'application f.
- 3. (a) Démontrer que, pour tout nombre complexe z différent de i, (z' + 2i)(z i) = 1.
 - (b) En déduire que pour tout point M d'affixe $z(z \neq i)$:

$$BM' \times AM = 1$$

et $(\overrightarrow{u}, \overrightarrow{BM'}) = -(\overrightarrow{u}, \overrightarrow{AM}) + k \times 2\pi$ où k est un entier relatif.

- 4. (a) Démontrer que les points D et E appartiennent au cercle (C) de centre A et de rayon $\sqrt{2}$.
 - (b) En utilisant les résultats de la question 3. b., placer le point E' associé au point E par l'application f. On laissera apparents les traits de construction.
- 5. Quelle est la nature du triangle BD' E'?

EXERCICE 3 5 points

Candidats ayant suivi l'enseignement de spécialité

Partie A

On cherche l'ensemble des couples d'entiers relatifs (x, y) solutions de l'équation

(E):
$$16x - 3y = 4$$
.

- 1. Vérifier que le couple (1, 4) est une solution particulière de (E).
- 2. Déterminer l'ensemble des couples d'entiers relatifs solutions de l'équation (E).

Partie B

Le plan complexe est rapporté à un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

On considère la transformation f du plan, qui à tout point M d'affixe z, associe le point M' d'affixe z' définie par

$$z' = \sqrt{2}e^{\frac{3i\pi}{8}}z.$$

On définit une suite de points (M_n) de la manière suivante :

le point M_0 a pour affixe z_0 = i et pour tout entier naturel n, M_{n+1} = $f(M_n)$.

On note z_n l'affixe du point M_n

Les points M_0 , M_1 , M_2 et M_3 sont placés sur la figure donnée en annexe page 6.

1. Déterminer la nature et les éléments caractéristiques de la transformation f.

- 2. On note g la transformation $f \circ f \circ f \circ f$.
 - (a) Déterminer la nature et les éléments caractéristiques de la transformation g.
 - (b) En déduire que pour tout entier naturel n, $OM_{n+4} = 4OM_n$ et que $\left(\overrightarrow{OM_n}, \overrightarrow{OM_{n+4}}\right) = -\frac{\pi}{2} + k \times 2\pi$ où k est un entier relatif.
 - (c) Compléter la figure en construisant les points M_4 , M_5 et M_6 .
- 3. Démontrer que pour tout entier naturel n, $z_n = \left(\sqrt{2}\right)^n e^{i\left(\frac{\pi}{2} + \frac{3n\pi}{8}\right)}$.
- 4. Soient deux entiers naturels n et p tels que $p \le n$.
 - (a) Exprimer en fonction de n et p une mesure de $(\overrightarrow{OM_p}, \overrightarrow{OM_n})$.
 - (b) Démontrer que les points O, M_p et M_n sont alignés si et seulement si n-p est un multiple de 8.
- 5. Déterminer l'ensemble des entiers naturels n tels que le point M_n appartienne à la demidroite [Ox). On pourra utiliser la partie A.

EXERCICE 4 8 points

Commun à tous les candidats

À tout entier naturel n non nul, on associe la fonction f_n définie sur $\mathbb R$ par

$$f_n(x) = \frac{4e^{nx}}{e^{nx} + 7}.$$

On désigne par \mathscr{C}_n la courbe représentative de la fonction f_n dans un repère orthonormal $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$. Les courbes \mathscr{C}_1 , \mathscr{C}_2 et \mathscr{C}_3 sont données en annexe.

Partie A : Étude de la fonction f_1 définie sur \mathbb{R} par $f_1(x) = \frac{4e^x}{e^x + 7}$

- 1. Vérifier que pour tout réel x, $f_1(x) = \frac{4}{1 + 7e^{-x}}$.
- 2. (a) Démontrer que la courbe \mathscr{C}_1 admet deux asymptotes dont on précisera des équations.
 - (b) Démontrer que la fonction f_1 est strictement croissante sur \mathbb{R} .
 - (c) Démontrer que pour tout réel x, $0 < f_1(x) < 4$.
- 3. (a) Démontrer que le point I_1 de coordonnées (ln7 ; 2) est un centre de symétrie de la courbe \mathscr{C}_1 .
 - (b) Déterminer une équation de la tangente (T_1) à la courbe \mathscr{C}_1 au point I_1 .
 - (c) Tracer la droite (T_1) .
- 4. (a) Déterminer une primitive de la fonction f_1 sur \mathbb{R} .
 - (b) Calculer la valeur moyenne de f_1 sur l'intervalle [0; ln7].

Partie B : Étude de certaines propriétés de la fonction f_n .

- 1. Démontrer que pour tout entier naturel n non nul le point $A\left(0; \frac{1}{2}\right)$ appartient à la courbe \mathscr{C}_n .
- (a) Démontrer que pour tout entier naturel *n* non nul la courbe \(\mathscr{C}_n\) et la droite d'équation y = 2 ont un unique point d'intersection dont on précisera l'abscisse.
 On note \(I_n\) ce point d'intersection.

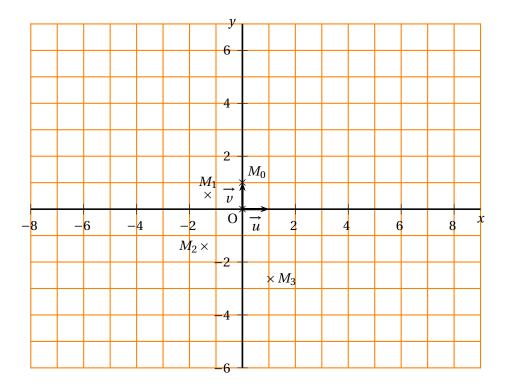
- (b) Déterminer une équation de la tangente (T_n) à la courbe \mathcal{C}_n au point I_n .
- (c) Tracer les droites (T_2) et (T_3) .
- 3. Soit la suite (u_n) définie pour tout entier naturel n non nul par

$$u_n = \frac{n}{\ln 7} \int_0^{\frac{\ln 7}{n}} f_n(x) \, \mathrm{d}x.$$

Montrer que la suite (u_n) est constante.

Cette page sera complétée et remise avec la copie à la fin de l'épreuve

Exercice 3 (enseignement de spécialité)



Exercice 4

