الصور المحصل عليما بواسـطة عدسـة رقيقة مجمعة

I I عمومات حول العدسات :

1ـ تعريف العدسة الكروية

 تتكون العدسة من وسط معامل انكساره n ، يختلف عن معامل انكسار الهواء .

2 ـ تعريف العدسة الرقيقة ونوعا العدسة الرقيقة. نسمي عدسة رقيقة عندما يكون سمكها على المحور البصري الرئيسـي صغيرا e= وفي هذه الحالة يمكن إعتبار ${ }^{\text {ا }}$ و و S_{1} منطبقين في نقطة واحدة تسمى مركز

العدسة .

4 ـ تـاثير العدسات على حزمة ضوئية أشعتها متوازية : تجربة 1:

العدسة المجمعة تحول حزمة ضوئية متوازية إلى حزمة ضوئية مجمعة .

العدسة المفرقة تحول حزمة ضوئية متوازية إلى حزمة ضوئية متفرقة . ملحوظة : الأوساط الشفافة للعين تتصرف مثل عدسة مجمعة ، ذلك أنها تجمع الحزم الضوئية التي تدخل إلى العين لتصل إلى الشـبكية تجربة 3 : مشـاهدة شـيء قريب عبر العدسـة . عندما نرى بواسطة عدسة رقيقة مجمعة شـيئا يبدو هذا الشـيء كبير نقول أن العدسـة تلعب

> دور مكبرة .

عند استعمال عدسة مفرقة نرى العكس أي أن الشـيء يبدو صغيرا .
. مميزات العدسة الرقيقة المجمعة
1 ـ المركز البصري والمحور البصري لعدسـة رقيقة مجمعة : كل الأشعة التي تمر من المركز O للعدسـة المجمعة لا تنحرف . تسـمى النقطة O بالمركز البصري للعدسـة . المحور البصري للعدسة هو محور تماثل العدسـة ، ونمثل هذا المحور مبيانيا بالمستقيم المتعامد مع العدسة المجمعة والمار من مركزها .

2 ـ البؤرة الرئيسية الصورة والمسافة البؤرية

أ ـ المؤرة الرئسسة الصورة الصوة :
كل الأشعة الواردة متوازية مع المحور البصري الرئيسـي تنبثق من العدسـة وتتجمع في نقطة واحدة ، تسمى البؤرة اتلرئيسية الصورة ، ويرمز لـها ب 'F' وتنتمي إلى المحور البصري الرئيسي ب - المسافة اليؤرية .
نوجه المحور البصري الرئيسي في نفس منحى انتشار الضوء ، ونختار المركز البصري كأصل لهذا المحور .

 قياسـعا المتر

> ج ـ قوة العدسـة الرققة المحمعة .
> C= $\frac{1}{f^{\prime}}$: ونعبر عنـا بالعلاقة التالية C نعرف قوة العدسة بالمقدار . توجد نقطة تنتمي إلى المحور البصري لكل عدسة مجمعة ، بحيث أن كل الأشعة التي تمر منها تنبثق من العدسـة متوازية مع المحور البصري الرئيسي ، تسمى هذه النقطة البؤرية الرئيسية الشـيء ونرمز لها ب F F F F $\overline{\mathbf{O F}^{\prime}}=-\overline{\mathbf{O F}} \quad$: انتشار الضوء هو المنحى الموجب لدينا

. الصورة المحصل عليما بواسـطة العدسة الرقيقة المجمعة

 1 d'approximation de Gaussملاحظة: نلاحظ أن ألأشعة تتجمع لكن في نقطتين مختلفتين على المحور البصري . الشعاعان المستندان على حافتي العدسة يتجمعان في نقطة قريبة من العدسـة بينما يتجمع الأخرين في نقطة أبعد عند وضع حجاب قبل العدسة لايسمح بانتشار إلا الأشعة الضوئية القريبة من المحور البصري

 الرئيسي والموازية له . تجربة ـ 2 : نعيد التجربة مع إمالة الأشعة الضوئية . نلاحظ : العدسة أقل فضاحة كلما ازدادت زاوية الميل للحزمة الضوئية الرقيقة بالنسبة للمحور البصري . نستنتج أن العدسـة جهاز بصري فضاح للحزمة الضوئية الرقيقة المائلة قليلا يالنسبة للمحور البصري الرئيسـي شرطا كوص :
للحصول على صورة واضحة يجب استعمال العدسات الرقيقة في شـروط كوص وهي الحـي

 2 ـ الحصول على صورة وواسطة عدسة رقـقة محمعة ـ

2 ـ 1 كيفية إنشاء صورة شـيء ضوئي .
 هندسيا وذلك باتباع الطريقة التالية :
 انحراف .
_ـ الشعا الوارد ، الموازي للمحور البصري الرئيسي للعدسـة ، ينبثق منـها مارا من البؤرة
 _ الشعاع الوارد المار من البؤرة الرئيسـية الشـيء F يجتاز العدسـة وينبثق منـا موازيا للمحور البصري الرئيسـي الواري يتقاطع شعاعان منبثقان في النقطة الصورة 'B لنقطة الشـيء B وبعملية إسقاط على المحور

2 - 2 مختلف أوضاع الصورة

\|إنشاء الصورة ' ${ }^{\text {' }}$	مميزة الصورة	مميزة الشيء
	الصورة أصغر من ، الشـيء وحقيقية أصغية مقلوبة $\mathbf{f}^{\prime}<\overline{\mathbf{O A}^{\prime}}<\mathbf{2 f}$	الشـيء في الا نهاية $\overline{\text { OA }}$
	تتكون الصورة في ألانهاية ووهمية	الشيء حقيقي $\overline{\mathrm{OA}}=\mathbf{f}$
	وهمية معتدلة وأكبر من الشـيء $\overline{\mathrm{OA}}>\overline{\mathbf{O A}^{\prime}}$	
	الصورة حقيقية ومقلوبة $\overline{\mathbf{O A}^{\prime}}=f^{\prime}$	ألا نشائية يوجد في

. علاقة التوافق والتكبير _ VI
1 ـ تكبير عدسة :
نسـمي النسبة

من خلال الشكل يلاحظ أن المثلثين متحاكين أي أن :

$$
\begin{array}{r}
\frac{\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime}}{\boldsymbol{A B}}=\frac{\boldsymbol{O} \boldsymbol{A}^{\prime}}{\boldsymbol{O A}} \\
\gamma=\frac{\overline{\boldsymbol{A}^{\prime} \boldsymbol{B}}}{\overline{\boldsymbol{A B}}}=\frac{\overline{\boldsymbol{O}^{\prime}}}{\overline{\boldsymbol{O} \boldsymbol{A}}}
\end{array}
$$

: قيمة جبرية تمكن من معرفة طول الصورة ومنحاها
للصورة نفس منحى الشـيء أي معتدلة . للصورة منحى معاكس للشـيء أي مقلوبة
 . الصورة أكبر من الشيء | | \mid | | |
 2 ـ 2
من خلال الشكل وعلاقة التكبير يمكن أن نكتب :

$$
\frac{\overline{O H}}{\overline{A^{\prime} B^{\prime}}}=\frac{\overline{F O}}{\overline{F^{\prime} A^{\prime}}} g \frac{\overline{A^{\prime} B^{\prime}}}{\overline{A B}}=\frac{\overline{O_{A}^{\prime}}}{\overline{O A}}
$$

$$
\begin{aligned}
& \overline{O H}=\overline{A B} \text { وبما أن }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\overline{O A^{\prime}}}-\frac{1}{\overline{O A}}=\frac{1}{\overline{O F^{\prime}}} \text { أي } \frac{\overline{O A A^{\prime}}}{\overline{O A}}=1+\frac{\overline{O A^{\prime}}}{\overline{O F^{\prime}}}
\end{aligned}
$$

$$
\frac{1}{p^{\prime}}-\frac{1}{p}=\frac{1}{f^{\prime}}
$$

وتسمى هذه العلاقة بعلاقة التوافق أو علاقة ديكارت . وتطبق هذه العلاقة بالنسبة للعدسة المجمعة أو المفرقة . فحسب الاصطلاحات السابقة : OF' > 0 OF'<0 OA > 0 OA <0 OA'>0 0 OA' > 0
3 ـ ت تطبيقات : تحديد المسافة البؤرية لعدسة مجمعة .
3-1 1 ـريقة نقطتي التوافق .
النشاط التنحرسي
نضع على النضد البصري ، وعلى التوالي ، العناصر التالية :
_ الشـيء المضيء F نرمز له ب الـوية
ـ العدسـة الرقيقة المجمعة ـ
 نبحث عن موضع أوضح للصورة وذلك بإزاحة الشاشة فوق الشا النضد البصري ، ثم نسجل المسافة
 نغير المسافة OA ونبحث ، بنفس الطريقة ، على المسافة 'OA وفي كل حالة نقيس طول الصورة 'Á́a نربط النضد البصري بنظمة محورين (O,ỉj) بحيث أن المحور (0, آ في منحى انتشار الضوء و (O, (O) محورا رأسيا موجـبا نحو الأعلى .

$\overline{\mathbf{O A}}(\mathbf{c m})$	-100	-90	-80	-70	-60	-50	-40
$\overline{\mathbf{O A}^{\prime}}(\mathbf{c m})$	41	43	45,5	49,5	55,5	69	103
$\overline{\mathbf{A}^{\prime} \mathbf{B}^{\prime}}(\mathbf{c m})$	0,80	1,00	1,15	1,45	2,00	2,80	4,60

1 ـ مثل تبيانة التركيب التجريبي مبرزا السلم المعتمد بالنسبة للمحور البصري الرئيسـي . 2 ـ مثل منحنى تغيرات 3 ـ عين ، مبيانيا ، قيمة المعامل الموجه لهذا المنحتى وكذا قيمة الأرتوب الموافق لأصل الأفاصيل . ماذا تستنتج ؟ 4 ـ أحسب المسـافة البؤرية للعدسـة .

التمثيل المبياني :

من التمثيل المبياني نستنتج المسافة البؤرية ff وذلك بتمديد المنحنى المحصل عليه حتى يتقاطع مع محور الأفاصيل في نقطة أفصولها يساوي

$$
\frac{1}{f^{\prime}}=3,5 \Rightarrow f^{\prime}=0,28 \mathrm{~m}
$$

الطريقة الثانية وهي طريقة سيلبيرمان Silbermann .
حسب علاقة التوافق نبين أنه إذا كانت فتكون $\overline{\mathrm{OA}}=-2 f^{\prime} \Rightarrow \overline{\mathrm{OA}^{\prime}}=2 f$ الصورة حقيقية ومقلوبة ومتقايسة مع الشـيء .
لدينا حسب الشكل أن :
$f^{\prime}=\frac{D}{4}$ وبالتالي D=4f'

تمرين تطسقي : المكيرة

المكبرة هي عبارة عن عدسـة رقيقة مجمعة ذات مسـافة بؤرية صغيرة (بضع سـنتميترات) ، وهي أداة تعطي لشـيء دقيق صورة مكبّرة .
 . بشكل أفضل استعمل عدسة رقيقة مجمعة قوتها 108 ومركزها البصري O كمكبرة . 1 ـ 1 أحسبـ المسافة البؤرية

 العدسة ، ثم تحقق من القيم السابقة الانـة الـا 3 أين ينبغي على الملاحظ وضع المركز البصري للعدسة لكي تكون الصورة 'Á여 في الا نهاية ؟ ما الفائدة من هذه الوضعية بالنسبة للملاحظ ؟

لكي تكون الصورة في ألا نهاية نضع الشـء AB في البؤرة الرئيسية الشـيء أي أن OA=f

الحصول على حزمة ضوئية متوازية ـ منار بحري .

