Matrices et suites

Table des matières

l.1 l.2	Définition2Opération sur les matrice31.2.1 Addition31.2.2 Multiplication par un scalaire (réel)41.2.3 Transposition d'une matrice41.2.4 Produit de deux matrices4
	1.2.1Addition31.2.2Multiplication par un scalaire (réel)41.2.3Transposition d'une matrice41.2.4Produit de deux matrices4
1.3	1.2.1 Addition31.2.2 Multiplication par un scalaire (réel)41.2.3 Transposition d'une matrice41.2.4 Produit de deux matrices4
1.3	1.2.3 Transposition d'une matrice
L.3	1.2.3 Transposition d'une matrice
1.3	
1.3	
	Écriture matricielle d'un système linéaire
1.4	Inversion d'une matrice
	1.4.1 Définition
	1.4.2 Condition pour qu'une matrice d'ordre 2 soit inversible
1.5	Puissance <i>n</i> -ième d'une matrice carrée d'ordre 2 ou 3
l.6	Diagonalisation d'une matrice d'ordre 2
	le de suite à l'aide de matrice
2.1	Un premier exemple : un système fermé
	2.1.1 Le problème
	2.1.2 Résolution
2.2	Étude d'une suite du type : $\mathbf{X}_{n+1} = \mathbf{X}_n \mathbf{M} + \mathbf{B} \dots \dots$
	2.2.1 Le problème
	2.2.2 Résolution
	1 1/ 1
Mar	che aléatoire 16
Mar 3.1	Marche aléatoire simple sur un segment
3.1	Marche aléatoire simple sur un segment
3.1 3.2 3.3	Marche aléatoire simple sur un segment
3.1 3.2 3.3	Marche aléatoire simple sur un segment
	.5 .6 E tu d

Introduction

Le but de ce chapitre est de résoudre quelques problèmes liés à des variables discrète par l'intermédiaire d'un nouvel outil que constitue les matrices. Il s'agit de mettre en évidence la pertinence d'introduire des matrices pour résoudre quelques problèmes concrets. Bien que l'introduction des matrices dans le nouveau programme doit se faire "naturellement", il me semble préférable d'introduire directement les matrices, en donnant des exemples concrets, sans théorie excessives, afin ensuite de traiter quelques exemples cités dans le programme.

1 Matrice

1.1 Définition

<u>Définition</u> 1 : Une matrice $\mathbf{M}(m \times n)$ est un tableau de nombres possèdant m lignes et n colonnes. On écrit alors :

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Les nombres a_{ij} sont les éléments ou coefficients de la matrice \mathbf{M} . a_{ij} est situé à l'intersection de la i^{e} ligne et de la j^{e} colonne. On note parfois la matrice \mathbf{M} par $[a_{ij}]$.

Exemple: Soit A matrice (2×3) définie par : $\begin{pmatrix} 1 & 2 & \mathbf{0} \\ \mathbf{4} & 3 & -1 \end{pmatrix}$

On a par exemple les coefficients $a_{21} = 4$ et $a_{13} = 0$

Woici les productions (en milliers) de deux usines de cycles appartenant à une même enseigne pour le premier semestre de l'année 2010 :

	VTT adultes	Vélos enfants	VTC	BMX	Vélos de course
Usine 1	12,99	13,20	5,58	1,53	1,95
Usine 2	4,62	4,98	2,16	0,51	0,78

On peut alors créer une matrice production \mathbf{P} dont les lignes correspondent aux usines et les colonnes aux différents type de cycles. La matrice \mathbf{P} est alors une matrice (2×5) :

$$\mathbf{P} = \begin{pmatrix} 12,99 & 13,20 & 5,58 & 1,53 & 1,95 \\ 4,62 & 4,98 & 2,16 & 0,51 & 0,78 \end{pmatrix}$$

Remarque: Quelques matrices particulières

• Si m = 1, la matrice **M** est appelée matrice ou vecteur ligne, par exemple :

$$\mathbf{M} = (1 \ 5 \ 8)$$

• Si n=1, la matrice ${\bf M}$ est appelée matrice ou vecteur colonne, par exemple :

$$\mathbf{M} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$$

• Si m = n, la matrice **M** est appelée matrice carrée d'ordre m. Par exemple la matrice carrée d'ordre 2 :

$$\mathbf{M} = \begin{pmatrix} 4 & 5 \\ 3 & -2 \end{pmatrix}$$

• Une matrice carrée est symétrique si et seulement si $a_{ij} = a_{ji} \quad \forall i \neq j$. Par exemple la matrice symétrique d'ordre 2 :

$$\mathbf{M} = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$$

• On définit la matrice unité I_m d'ordre m par la matrice carrée d'ordre m qui possède que des "1" sur sa diagonale et des "0" ailleurs. Par exemple la matrice unité d'ordre 3 :

$$\mathbf{I_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• On définit une matrice diagonale d'ordre *m* par la matrice carrée d'ordre *m* qui ne possède des éléments non nuls que sur sa diagonale. Par exemple :

$$\mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

• On définit une matrice triangulaire d'ordre *m* par une matrice carrée d'ordre *m* qui possède un triangle composé uniquement de "0". Si la diagonale est composée de "0", on dit alors que la matrice est strictement triangulaire. Par exemple :

$$\mathbf{T} = \begin{pmatrix} 1 & 4 & 5 \\ 0 & 2 & 7 \\ 0 & 0 & 6 \end{pmatrix} \qquad \qquad \mathbf{T} = \begin{pmatrix} 0 & 4 & 5 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{pmatrix}$$

Matrice triangulaire supérieure

Matrice strictement triangulaire

1.2 Opération sur les matrice

1.2.1 Addition

Définition 2 : L'addition ou la soustraction de deux matrices de même dimension **A** et **B** est égale à la matrice **C** dont chaque coefficient est obtenu en additionnant ou soustrayant chaque coefficient de la matrice **A** au coefficient correspondant de la matrice **B**. Par exemple :

$$\begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & -1 \end{pmatrix} + \begin{pmatrix} 5 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 6 & 4 & 3 \\ 5 & 6 & 3 \end{pmatrix}$$

Remarque: L'addition de deux matrices ne posent donc aucun problème.

1.2.2 Multiplication par un scalaire (réel)

Définition 3: Le produit de la matrice **A** par un réel λ , est égal à la matrice **B** dont chaque coefficient est obtenu en multipliant chaque coefficient de la matrice **A** par λ . Par exemple :

$$2 \cdot \begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 0 \\ 8 & 6 & -2 \end{pmatrix}$$

Remarque: Cette opération ne pose donc aucun problème. Ces deux opérations sont identiques à celles utilisées par les vecteurs. Les matrices et les vecteurs ont donc une même structure appelée: espace vectoriel sur \mathbb{R} .

1.2.3 Transposition d'une matrice

<u>Définition</u> **4** : La transposée ${}^t\mathbf{M}$ d'une matrice $\mathbf{M}(m \times n)$ est la matrice $(n \times m)$ obtenue en échangeant les lignes et les colonnes de la matrice \mathbf{M} . Par exemple

Si
$$\mathbf{M} = \begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & -1 \end{pmatrix}$$
 alors ${}^{t}\mathbf{M} = \begin{pmatrix} 1 & 4 \\ 2 & 3 \\ 0 & -1 \end{pmatrix}$

Remarque:

- La transposée d'un vecteur colonne est un vecteur ligne
- Si **M** est une matrice carrée symétrique, alors : t **M** = **M**

1.2.4 Produit de deux matrices

<u>Définition</u> **S**: Le produit d'un vecteur ligne par un vecteur colonne est égal à la somme des produits de chaque coefficient du vecteur ligne avec le coefficient correspondant du vecteur colonne. Par exemple :

$$\begin{pmatrix} 4 & 3 & -1 \end{pmatrix} \times \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} = 4 \times 5 + 3 \times 2 - 1 \times 3 = 23$$

Remarque: Cette opération correspond au produit scalaire de deux vecteurs.

On généralise cette opération à deux matrices quelconques $\bf A$ et $\bf B$ pourvu que le nombre de colonnes de la matrice $\bf A$ correspondent au nombre de lignes de la matrice $\bf B$.

<u>Définition</u> **6**: Le produit de la matrice $\mathbf{A}(m \times n)$ par la matrice $\mathbf{B}(n \times p)$ est égal à la matrice $\mathbf{C}(m \times p)$ dont chaque coefficient c_{ij} est égal au produit scalaire de la ligne i de la matrice \mathbf{A} par la colonne j de la matrice \mathbf{B} . Par exemple :

$$\begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & -1 \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 2 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 \times 5 + 2 \times 2 + 0 \times 3 & 1 \times 1 + 2 \times 3 + 0 \times 5 \\ 4 \times 5 + 3 \times 2 - 1 \times 3 & 4 \times 1 + 3 \times 3 - 1 \times 5 \end{pmatrix}$$

$$= \begin{pmatrix} 9 & 7 \\ 23 & 8 \end{pmatrix}$$

Remarque: Le produit de deux matrices est:

- associatif : $\mathbf{A}(\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{B}\mathbf{C}$
- distributif par rapport à l'addition : A(B+C) = AB + AC
- non commutatif : $AB \neq BA$ en général.

Exemple: Une association de consommateurs compare les prix de cinq produits p_1 , p_2 , p_3 , p_4 , p_5 distincts dans trois magasins différents. Les observations fournissent les données suivantes :

	Produit p_1	Produit p_2	Produit p_3	Produit p_4	Produit p_5
magasin 1	1	5	2	3	4
magasin 2	1,1	4,7	1,8	3,1	3,8
magasin 3	0,9	5,1	1,9	3,2	4

On peut stocker les prix des produits sous la forme d'une matrice $P(3 \times 5)$.

$$\mathbf{P} = \begin{pmatrix} 1 & 5 & 2 & 3 & 4 \\ 1,1 & 4,7 & 1,8 & 3,1 & 3,8 \\ 0,9 & 5,1 & 1,9 & 3,2 & 4 \end{pmatrix}$$

Pour comparer la dépense d'une ménagère selon les magasins, on considère un « panier » indiquant pour chaque produit la quantité achetée.

On appelle q_1 , q_2 , q_3 , q_4 et q_5 , les quantités correspondant aux 5 produits. par exemple 2, 1, 3, 3, 2

Le panier d'une ménagère peut être représenté par un vecteur colonne \mathbf{Q} (1 × 5) :

$$\mathbf{Q} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 3 \\ 2 \end{pmatrix}$$

Soit Π_1 , Π_2 et Π_3 les prix du panier de la ménagère dans chacun des trois magasins. On note alors Π (1×3) le vecteur colonne correspondant à ces trois prix :

$$\mathbf{\Pi} = egin{pmatrix} \Pi_1 \ \Pi_2 \ \Pi_3 \end{pmatrix}$$

On peut donc traduire, le prix du panier de la ménagère dans chacun des trois magasin par l'égalité matricielle suivante :

$$\Pi = P \times Q$$

En remplaçant par les données de notre exemple, on a :

$$\begin{pmatrix} \Pi_1 \\ \Pi_2 \\ \Pi_3 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 2 & 3 & 4 \\ 1,1 & 4,7 & 1,8 & 3,1 & 3,8 \\ 0,9 & 5,1 & 1,9 & 3,2 & 4 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 3 \\ 3 \\ 2 \end{pmatrix}$$

Ce qui donne:

$$\begin{pmatrix} \Pi_1 \\ \Pi_2 \\ \Pi_3 \end{pmatrix} = \begin{pmatrix} 1 \times 2 + 5 \times 1 + 2 \times 3 + 3 \times 3 + 4 \times 2 \\ 1, 1 \times 2 + 4, 7 \times 1 + 1, 8 \times 3 + 3, 1 \times 3 + 3, 8 \times 2 \\ 0, 9 \times 2 + 5, 1 \times 1 + 1, 9 \times 3 + 3, 2 \times 3 + 4 \times 2 \end{pmatrix} = \begin{pmatrix} 30 \\ 29, 2 \\ 30, 2 \end{pmatrix}$$

1.3 Écriture matricielle d'un système linéaire

Définition 7 : Soit le système (S) linéaire $(n \times n)$ suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

On pose
$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \quad \text{et} \quad \mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$

On a alors l'écriture matricielle du système (S) est :

$$MX = B$$

Exemple: Soit le système suivant : $\begin{cases} 2x - 3y = 5 \\ 5x - 4y = 1 \end{cases}$

Son écriture matricielle est donc :

$$\begin{pmatrix} 2 & -3 \\ 5 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

1.4 Inversion d'une matrice

1.4.1 Définition

<u>Définition</u> 8 : Une matrice carrée M est dites inversible (ou régulière) si, et seulement si, il existe une matrice carrée, appelée matrice inverse et notée M^{-1} , telle que :

$$\mathbf{M} \times \mathbf{M}^{-1} = \mathbf{M}^{-1} \times \mathbf{M} = \mathbf{I}$$

Si M^{-1} n'existe pas, on dit que la matrice M est singulière

Exemple: Soit la matrice A carrée d'ordre 2, définie par : $\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$.

Montrons que la matrice **B** définie par : $\begin{pmatrix} -0.5 & 1.5 \\ 1 & -2 \end{pmatrix}$ est la matrice inverse de la matrice **A**.

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} -0.5 & 1.5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} -2+3 & 6-6 \\ -1+1 & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{B} \times \mathbf{A} = \begin{pmatrix} -0.5 & 1.5 \\ 1 & -2 \end{pmatrix} \times \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -2+3 & -1.5+1.5 \\ 4-4 & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

1.4.2 Condition pour qu'une matrice d'ordre 2 soit inversible

Définition $\mathbf{9}$: Soit \mathbf{M} une matrice carrée d'ordre 2, on appelle déterminant de la matrice \mathbf{M} , noté $\det(\mathbf{M})$, le nombre réel tel que :

$$\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 alors $\det(\mathbf{M}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Exemple: Pour la matrice A précédente, on a :

$$\det(\mathbf{A}) = \begin{vmatrix} 4 & 3 \\ 2 & 1 \end{vmatrix} = 4 \times 1 - 3 \times 2 = -2$$

<u>Théorème</u> 1 : Une matrice carrée d'ordre deux est inversible si et seulement si son déterminant est différent de 0.

$$\mathbf{M}^{-1}$$
 existe \Leftrightarrow $det(\mathbf{M}) \neq 0$

On a alors:

$$\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $\det(\mathbf{M}) \neq 0$ alors $\mathbf{M}^{-1} = \frac{1}{\det(\mathbf{M})} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Démonstration: On se donne une matrice $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et on cherche alors une matrice $\mathbf{B} = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ telle que :

$$\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A} = \mathbf{I}_2$$

La première égalité se traduit par :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

On obtient alors les deux systèmes suivants :

$$\begin{cases} ax + bz = 1 \\ cx + dz = 0 \end{cases} \text{ et } \begin{cases} ay + bt = 0 \\ cy + dt = 1 \end{cases}$$

Ces systèmes admettent des solutions si leur déterminant est non nul. La condition est donc :

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0 \quad \Leftrightarrow \quad \det(\mathbf{A}) \neq 0$$

Par substitution, on obtient les solutions suivantes :

$$x = \frac{d}{ad - bc}$$
 $z = \frac{-c}{ad - bc}$ $y = \frac{-b}{ad - bc}$ $t = \frac{a}{ad - bc}$

On obtient alors la matrice **B** suivante : $\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

On vérifie ensuite que l'égalité suivante est vérifiée : $\mathbf{B} \times \mathbf{A} = \mathbf{I}_2$

Exemple: Déterminer la matrice inverse de la matrice $\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$

On calcule : $det(\mathbf{A}) = -2$ (calculé plus haut). Comme le déterminant de la matrice \mathbf{A} est non nul, la matrice \mathbf{A} admet une matrice inverse \mathbf{A}^{-1} telle que :

$$\mathbf{A}^{-1} = \frac{1}{-2} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -0.5 & 1.5 \\ 1 & -2 \end{pmatrix}$$

On retrouve la matrice B de l'exemple de la définition

1.5 Puissance *n*-ième d'une matrice carrée d'ordre 2 ou 3

<u>Définition</u> IO: On appelle puissance n-ième d'une matrice carrée M, la matrice, notée M^n telle que :

$$\mathbf{M}^n = \underbrace{\mathbf{M} \times \mathbf{M} \times \cdots \times \mathbf{M}}_{n \text{ fois}}$$

Exemple: On donne
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$$
. Calculer \mathbf{A}^2 et \mathbf{A}^3

$$\mathbf{A}^2 = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix}$$

$$\mathbf{A}^3 = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 13 & 14 \\ 21 & 6 \end{pmatrix}$$

Exemple: On donne
$$\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$$
. A l'aide de votre calculatrice, calculer \mathbf{B}^2 ,

B³ ainsi que la matrice inverse (valeurs approchée décimale).

Pour la TI 82, on sélectionne la touche matrice. Il faut d'abord éditer la matrice en donnant la dimension (ici 3×3) puis rentrer les coefficients de la matrice en validant à chaque coefficient. On quitte, puis on sélectionne la matrice et on l'élève à la puissance 2 puis 3. Pour trouver la matrice inverse, on utilise la touche x^{-1} . On trouve alors :

$$\mathbf{B}^{2} = \begin{pmatrix} 13 & 15 & 8 \\ 11 & 13 & 12 \\ 13 & 13 & 10 \end{pmatrix} \quad \mathbf{B}^{3} = \begin{pmatrix} 74 & 80 & 62 \\ 74 & 84 & 58 \\ 71 & 82 & 62 \end{pmatrix} \quad \mathbf{B}^{-1} = \begin{pmatrix} -0.086 & -0.083 & 0.417 \\ 0.583 & -0.417 & 0.083 \\ -0.333 & 0.666 & -0.333 \end{pmatrix}$$

Remarque: Les problèmes rencontrés font intervenir des puissances de matrices. On peut faire les calculs avec une calculatrice pour des matrices de petite taille et des puissances raisonnables, on peut faire les calculs à l'aide d'un logiciel pour des puissances explicites, à l'aide d'un logiciel de calcul formel pour obtenir, dans les bons cas, des formules « closes », donnant l'expression des coefficients en fonction de l'exposant, mais il est plus difficile d'obtenir, dans le cas général, ce que nous avons appelé des limites.

Certaines matrices sont très bien adaptées pour calculer la puissance *n*-ième. C'est le cas particulièrement des matrices diagonales. En effet, pour trouver la puissance *n*-ième d'une matrice diagonale, il suffit simplement d'élever à la puissance *n* les coefficients de la diagonale les autres coefficients restant nuls.

$$\mathbf{D} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \quad \text{alors} \quad \mathbf{D}^n = \begin{pmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{pmatrix}$$

On peut ainsi être amener à diagonaliser une matrice.

1.6 Diagonalisation d'une matrice d'ordre 2

Définition II : On dit qu'une matrice carrée d'ordre 2 est diagonalisable s'il existe une matrice carrée **P** d'ordre 2 inversible et les réels α et β tels que :

$$\mathbf{A} = \mathbf{P} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \mathbf{P}^{-1}$$

On a alors:

$$\mathbf{A}^n = \mathbf{P} \begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} \mathbf{P}^{-1}$$

Théorème 2 : Une matrice carrée **A** d'ordre 2 est diagonalisable si, et seulement si, il existe deux réels α et β (non nécessairement distincts) et deux vecteurs colonnes non colinéaires **V** et **W** telles que :

$$\mathbf{AV} = \alpha \mathbf{V}$$
 et $\mathbf{AW} = \beta \mathbf{W}$

Les réels α et β (s'ils existent) s'appellent les valeurs propres de la matrice **A**. Les vecteurs colonnes associés s'appellent alors les vecteurs propres.

Exemple: On pose
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
.

Diagonaliser **A** puis déterminer A^n en fonction de n.

On pose
$$\mathbf{V} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 et $\mathbf{W} = \begin{pmatrix} c \\ d \end{pmatrix}$

On doit donc avoir $AV = \alpha V$ et $AW = \beta W$ ce qui se traduit par les systèmes suivants :

$$\begin{cases} a + 2b = \alpha a \\ 2a + 4b = \alpha b \end{cases} \text{ et } \begin{cases} c + 2d = \beta c \\ 2c + 4d = \beta d \end{cases}$$

qui peuvent se mettre sous la forme :

$$\begin{cases} a(1-\alpha) + 2b = 0 \\ 2a + b(4-\beta) = 0 \end{cases} \text{ et } \begin{cases} c(1-\beta) + 2d = 0 \\ 2c + d(4-\beta) = 0 \end{cases}$$

Si ces systèmes admettent une solution unique, cette solution ne peut-être que (0,0). Les vecteurs colonnes seront égaux au vecteur nul donc colinéaires, ce qui est impossible. Donc ces systèmes doivent avoir une droite solution, ce qui n'est possible que si le déterminant de ces systèmes est nul. Soit λ , le nombre réel qui représente soit α soit β . On doit avoir un déterminant nul pour le système générique suivant :

$$\begin{cases} a(1-\lambda) + 2b = 0\\ 2a + b(4-\lambda) = 0 \end{cases}$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix} = 0 \quad \Leftrightarrow \quad (1 - \lambda)(4 - \lambda) - 4 = 0 \quad \Leftrightarrow \quad \lambda^2 - 5\lambda = 0$$

Cette équation du second degré, admet deux solutions distinctes 0 et 5 qui sont les valeurs de α et β pour diagonaliser la matrice **A**.

Remarque: si cette équation n'avait pas admis deux racines distinctes, la matrice **A** n'aurait pas été diagonalisable.

Il reste à déterminer des vecteurs propres associés aux valeurs de α et β . Comme les systèmes n'ont pas de solution unique, on cherche des coordonnées simples :

$$\alpha = 0$$
 donne $a = -2b$ si $b = 1$ alors $a = -2$
 $\beta = 5$ donne $2c = d$ si $c = 1$ alors $d = 2$

On obtient donc les deux vecteurs colonnes suivants :

$$\mathbf{V} = \begin{pmatrix} -2\\1 \end{pmatrix}$$
 et $\mathbf{W} = \begin{pmatrix} 1\\2 \end{pmatrix}$

On en déduit alors :

$$\mathbf{P} = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{et sa matrice inverse} \quad \mathbf{P}^{-1} = -\frac{1}{5} \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

On obtient alors:

$$\mathbf{A}^{n} = \mathbf{P} \begin{pmatrix} \alpha^{n} & 0 \\ 0 & \beta^{n} \end{pmatrix} \mathbf{P}^{-1} = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0^{n} & 0 \\ 0 & 5^{n} \end{pmatrix} \begin{pmatrix} -\frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix} = \begin{pmatrix} 5^{n-1} & 2 \times 5^{n-1} \\ 2 \times 5^{n-1} & 4 \times 5^{n-1} \end{pmatrix}$$

Remarque: La diagonalisation est donc une opération complexe qui est utilisable que si les conditions s'y prêtent!

2 Étude de suite à l'aide de matrice

2.1 Un premier exemple : un système fermé

2.1.1 Le problème

On conserve dans une enceinte une population d'êtres unicellulaires qui ne peuvent se trouver que dans deux états physiologiques désignés par A et B. On désigne par a_n et b_n les effectifs - exprimés en milliers d'individus - des deux sous-populations (correspondant à chacun des deux états A et B) à l'instant n. Des observations menées sur une assez longue période permettent d'estimer que 95% des unicellulaires se trouvant à l'instant n dans l'état A n'ont pas changé d'état à l'instant n 1, non plus que 80% de ceux se trouvant à l'instant n dans l'état B. L'effectif total s'élève à 500 000 individus. Cet effectif reste constant durant le temps.

- 1) Traduire, avec des données, le système donnant a_{n+1} et b_{n+1} en fonction de a_n et b_n
- 2) La population à l'instant 0 satisfait $a_0 = 375$. A l'aide d'un tableur, faire le calcul des effectifs a_n et b_n pour les valeur de n de 0 à 50. Peut-on faire une conjecture sur le comportement des suite (a_n) et b_n)? Effectuer de nouveaux essais en prenant d'autres valeurs initiales. Quelle nouvelle conjecture peut-on faire sur le comportement des suite (a_n) et (b_n) ?
- 3) Traduire le système d'équation à l'aide de la notation matricielle. En déduire l'écriture matricielle donnant a_n et b_n en fonction des conditions initiales a_0 et b_0 .
- 4) On donne pour $\mathbf{M} = \begin{pmatrix} 0.95 & 0.2 \\ 0.05 & 0.8 \end{pmatrix}$, grâce à une diagonalisation, on obtient :

$$\mathbf{M}^{n} = \frac{1}{5} \begin{pmatrix} 4+0.75^{n} & 4-4\times0.75^{n} \\ 1-0.75^{n} & 1+4\times0.75^{n} \end{pmatrix}$$

- a) Exprimer a_n et b_n en fonction de n et de a_0 .
- b) Conclure

2.1.2 Résolution

1) Si 95% des cellules dans l'état A reste dans cet état à l'instant n+1 alors 5% passe à l'état B. De même si 80% des cellules dans l'état B reste dans cet état à l'instant n+1 alors 20% passe à l'état A. On obtient donc le système suivant :

$$\begin{cases} a_{n+1} = 0,95a_n + 0,2b_n \\ b_{n+1} = 0,05a_n + 0,8b_n \end{cases}$$

2) Si la population à l'instant initial satisfait $a_0 = 375$ alors $b_0 = 500 - 375 = 125$. On rentre ces données dans les cellules B2 et C2. On écrit les formules suivantes dans les cellules B3 et C3 puis on recopie ces formules vers le bas :

B3:
$$= 0.95 * B2 + 0.2 * C2$$
 et $C3: = 0.05 * B2 + 0.8 * C2$

On obtient alors le tableau suivant :

	A	В	С
1	n	a_n	b_n
2	0	375	125
3	1	381,25	118,75
4	2	385,937 5	114,062 5
5	3	389,453 125	110,546 875
6	4	392,089 843 8	107,910 156 3
7	5	394,067 382 8	105,932 617 2
• • •			•••
• • •		•••	• • •
35	33	399,998 116 5	100,001 883 5
36	34	399,998 587 4	100,001 412 6
37	35	399,998 940 5	100,001 059 5
38	36	399,999 205 4	100,000 794 6

Le système se stabilise et le nombre de cellules dans l'état A semble converger vers 400 000 et dans l'état B vers 100 000.

Inversons par exemple les valeurs de départ. Prenons $a_0 = 125$ et $b_0 = 375$. On obtient alors le tableau suivant :

	A	В	С
1	n	a_n	b_n
2	0	125	375
3	1	193,75	306,25
4	2	245,312 5	254,687 5
5	3	283,984 375	216,015 625
6	4	312,988 281 3	187,011 718 8
7	5	334,741 210 9	165,258 789 1
•••		•••	•••
• • •		•••	• • •
35	33	399,979 281 7	100,020 718 3
36	34	399,984 461 3	100,015 538 7
37	35	399,988 345 9	100,011 654 1
38	36	399,991 259 5	100,008 740 5

On peut donc faire la conjecture suivante : « quel que soit l'état initiale, le système converge vers 400 000 cellules dans l'état A et 100 000 dans l'état B ».

3) La traduction du système avec les notations matricielle donne :

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0.95 & 0.2 \\ 0.05 & 0.8 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix} \quad \text{soit} \quad \begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 0.95 & 0.2 \\ 0.05 & 0.8 \end{pmatrix}^n \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

4) a) D'après les données on obtient :

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4+0.75^n & 4-4\times0.75^n \\ 1-0.75^n & 1+4\times0.75^n \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

En prenant $b_0 = 500 - a_0$, on obtient :

$$a_n = \frac{4}{5}a_0 + \frac{0.75^n}{5}a_0 + 400 - \frac{4}{5}a_0 - 400(0.75^n) + \frac{4(0.75^n)}{5}a_0$$

= 0.75ⁿ(a₀ - 400) + 400

$$b_n = \frac{1}{5}a_0 - \frac{0.75^n}{5}a_0 + 100 - \frac{1}{5}a_0 + 400(0.75^n) - \frac{4(0.75^n)}{5}a_0$$

= 0.75ⁿ(400 - a₀) + 100

b) On a:
$$\lim_{n \to +\infty} 0.75^n = 0$$
, car $-1 < 0.75 < 1$

les suites (a_n) et (b_n) convergent, quelque soit l'état initial, vers les valeurs respectives de 400 et 100 soit respectivement 400 000 et 100 000 cellules.

2.2 Étude d'une suite du type : $X_{n+1} = X_n M + B$

2.2.1 Le problème

On estime que les patients admis dans un certain service d'un hôpital peuvent se trouver dans l'un des 4 états suivants : 1. Soins réguliers, 2. Chirurgie, 3. Soins intensifs, 4. Sortie.

Cette estimation est décrite par le tableau suivant, dans lequel sont indiquées les probabilités de passage d'un des états à un autre dans un intervalle de 24 heures (probabilités obtenues par modélisation des fréquences observées sur une longue période).

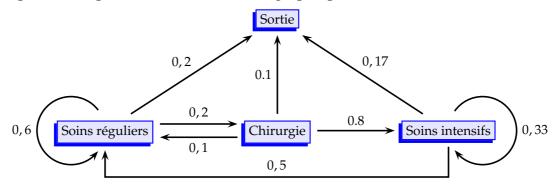
Tableau de circulation des malades entre les services :

	Soins réguliers	Chirurgie	Soins intensifs	Sortie
Soins réguliers	0,6	0,2	0	0,2
Chirurgie	0,1	0	0,8	0,1
Soins intensifs	0,5	0	0,33	0,17
Sortie	0	0	0	0

Les informations chiffrées précédentes peuvent être stockées sous la forme d'une matrice \mathbf{M} (4 × 4) appelée matrice de transition :

$$\mathbf{M} = \begin{pmatrix} 0, 6 & 0, 2 & 0 & 0, 2 \\ 0, 1 & 0 & 0, 8 & 0, 1 \\ 0, 5 & 0 & 0, 33 & 0, 17 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On pourrait, à partir du tableau trace le graphe probabiliste suivant :



Supposons qu'un certain jour n, la distribution des patients suivant les quatre états possibles s'écrive $\mathbf{X}_n = \begin{pmatrix} 12 & 5 & 6 & 3 \end{pmatrix}$. Le lendemain n+1, la nouvelle distribution sera \mathbf{X}_{n+1} tel que

$$\mathbf{X}_{n+1} = \mathbf{X}_n \times \mathbf{M}$$

Ce qui donne :

$$\mathbf{X}_{n+1} = \begin{pmatrix} 12 & 5 & 6 & 3 \end{pmatrix} \times \begin{pmatrix} 0,6 & 0,2 & 0 & 0,2 \\ 0,1 & 0 & 0,8 & 0,1 \\ 0,5 & 0 & 0,33 & 0,17 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 10,7 & 2,4 & 6 & 3,9 \end{pmatrix}$$

Supposons qu'au jour 0, dix patients soient admis en soins réguliers et qu'il n'y ait aucun patient en cours de traitement. On note $\mathbf{X}_0 = \begin{pmatrix} 10 & 0 & 0 \end{pmatrix}$ la répartition des malades le jour 0 et \mathbf{X}_n la répartition des malades au n-ième jour, n entier positif.

Supposons également que 10 patients soient admis chaque jour.

- 1) En utilisant la notation matricielle et votre calculatrice, déterminer la répartition des patients les jours 1 et 2 soit X_1 et X_2 .
- 2) Exprimer X_{n+1} en fonction de X_n .
- 3) A l'aide d'un tableur, déterminer les répartitions pour les jours de 1 à 35. De même à l'aide d'une calculatrice proposer un programme permettant à l'aide de variables matricielles de donner la matrice répartition X_n pour les valeurs suivante de n: n = 15, n = 30 et n = 50 Oue constatez-vous?
- 4) On admet que cette suite de matrices converge vers une répartition **X**. Déterminer **X** à l'aide d'un calcul matriciel puis à l'aide de la résolution d'un système et retrouver le résultat de la question précédente.

2.2.2 Résolution

1) On obtient:

$$\mathbf{X}_{1} = \begin{pmatrix} 10 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0.6 & 0.2 & 0 & 0.2 \\ 0.1 & 0 & 0.8 & 0.1 \\ 0.5 & 0 & 0.33 & 0.17 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 10 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 16 & 2 & 0 & 2 \end{pmatrix}$$

$$\mathbf{X}_2 = \begin{pmatrix} 16 & 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0,6 & 0,2 & 0 & 0,2 \\ 0,1 & 0 & 0,8 & 0,1 \\ 0,5 & 0 & 0,33 & 0,17 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 10 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 19,8 & 3,2 & 1,6 & 3,4 \end{pmatrix}$$

2) On obtient, en posant $\mathbf{B} = \begin{pmatrix} 10 & 0 & 0 \end{pmatrix}$

$$X_{n+1} = X_n M + B$$

3) On rentre la matrice X_0 dans les cellules B2, C2, D2 et E2. On écrit les formules suivantes dans les cellules B3, C3, D3 et E3 puis on recopie ces formules vers le bas :

B3:
$$= 0, 6 * B2 + 0, 1 * C2 + 0, 5 * D2 + 10$$

C3: $= 0, 2 * B2$

D3: $= 0, 8 * C2 + 0, 33 * D2$

E3: $= 0, 2 * B2 + 0, 1 * C2 + 0, 17 * D2$

On obtient alors le tableau suivant :

	A	В	С	D	Е
1	n	Soins régulier	Chirurgie	Soins intensifs	Sortie
2	0	10	0	0	0
3	1	16	2	0	2
4	2	19,8	3,2	1,6	3,4
5	3	23	3,96	3,088	4,552
6	4	25,74	4,6	4,18704	5,52096
7	5	27,997 52	5,148	5,061 723 2	6,319 796 8
8	6	29,844 173 6	5,599 504	5,788 768 656	6,974 796 944
9	7	31,360 838 89	5,968 834 72	6,389 896 856	7,512 875 792
10	8	32,608 335 23	6,272 167 778	6,883 733 739	7,955 333 715
11	9	33,634 084 79	6,521 667 047	7,289 366 356	8,319 118 560
12	10	34,477 300 75	6,726 816 957	7,622 824 535	8,618 175 943
34	32	38,321 088 06	7,661 952 278	9,143 102 974	9,981 437 875
35	33	38,330 399 55	7,664 217 612	9,146 785 804	9,984 740 345
36	34	38,338 054 39	7,666 079 91	9,149 813 404	9,987 455 258
37	35	38,344 347 33	7,667 610 879	9,152 302 351	9,989 687 148

On appellera [A] la matrice \mathbf{M} , la matrice [B] la matrice \mathbf{B} et la matrice [C] la matrice \mathbf{X}_n . On peut alors proposer le programme ci-contre :

Remarque : On aura auparavant rentré les matrices [A] et [B] et dimensionné la matrice [C] en 1×4 .

On trouve alors:

$$\mathbf{X}_{15} = \begin{pmatrix} 36,911 & 7,319 & 8,585 & 9,481 \end{pmatrix}$$

 $\mathbf{X}_{30} = \begin{pmatrix} 38,296 & 7,656 & 9,133 & 9,973 \end{pmatrix}$
 $\mathbf{X}_{50} = \begin{pmatrix} 38,372 & 7,674 & 9,163 & 9,999 \end{pmatrix}$

```
Variables : [A], [B], [C] matrices N et I entiers naturels

Entrées et initialisation

Lire N

[B] \rightarrow [C]

Traitement

pour I de 1 à N faire

| [C] \times [A] + [B] \rightarrow [C]

fin

Sorties : Afficher [C]
```

Ces résultats montrent que la situation tend à se stabiliser.

4) Si la suite de matrice converge, alors elle converge vers **X** tel que :

$$X = XM + B$$

Résolution matricielle : I désigne la matrice unité d'ordre 4.

• On isole la matrice X : X - XM = B

- On factorise par X: X(I M) = B
- On multiplie par la matrice inverse : $\mathbf{X} = \mathbf{B}(\mathbf{I} \mathbf{M})^{-1}$

Un application numérique avec la calculatrice donne :

$$\mathbf{X} = (38,373 \ 7,675 \ 9,164 \ 10,000)$$

Résolution par un système : Permet de déterminer les valeurs exactes Si on pose : $\mathbf{X} = (a \ b \ c \ d)$, on a donc :

$$(a \quad b \quad c \quad d) = (a \quad b \quad c \quad d) \begin{pmatrix} 0,6 & 0,2 & 0 & 0,2 \\ 0,1 & 0 & 0,8 & 0,1 \\ 0,5 & 0 & 0,33 & 0,17 \\ 0 & 0 & 0 & 0 \end{pmatrix} + (10 \quad 0 \quad 0)$$

On obtient alors le système suivant :

$$\begin{cases} 0,6a+0,1b+0,5c+10=a \\ 0,2a=b \\ 0,8b+0,33c=c \\ 0,2a+0,1b+0,17c=d \end{cases} \Leftrightarrow \begin{cases} -0,4a+0,1b+0,5c=-10 & (1) \\ a=5b & (2) \\ 0,8b-0,67c=0 & (3) \\ d=0,2a+0,1b+0,17c & (4) \end{cases}$$

De (2) a = 5b, on remplace dans les équations (1) et (3), on obtient alors le système suivant :

$$\begin{cases} -1,9b+0,5c = -10 \\ 0,8b-0,67c = 0 \end{cases} \Leftrightarrow \begin{cases} -19b+5c = -100 \\ 80b-67c = 0 \end{cases}$$

On obtient alors les valeurs :

$$b = \frac{6700}{873} \simeq 7,674\,684\,994$$
 et $c = \frac{8\,000}{873} \simeq 9,163\,802\,978$

On en déduit à l'aides des équation (2) et (4) :

$$a = \frac{33\,500}{873} \simeq 38,373\,424\,97$$
 et $d = 10$

Le système se stabilise donc par la répartition :

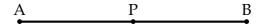
$$\mathbf{X} = \begin{pmatrix} 33500 & 6700 & 8000 \\ 873 & 873 & 873 \end{pmatrix} \quad 10$$

3 Marche aléatoire

On s'intéresse au comportement à long terme d'une marche aléatoire. Il s'agit de calculer les probabilités pour le héros d'une marche aléatoire dans un réseau de se trouver après n pas en tel ou tel sommet (ou nœud) du réseau.

3.1 Marche aléatoire simple sur un segment

Le personnage se déplace d'un sommet à l'autre du graphe ci-dessous. S'il est en A ou en B, il ne peut aller qu'en P, s'il est en P, il peut aller en A ou en B avec des probabilités que nous considérons comme identiques.



On peut représenter la situation par une matrice **M** (dite de transition) qui indique les probabilités de passage d'un sommet à un autre. La matrice **M** cidessous représente la marche dans le réseau (A,P,B).

$$\mathbf{M} = \begin{array}{ccc} A & P & B \\ A & 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ B & 0 & 1 & 0 \end{array}$$

Les coefficients figurant sur chaque ligne donnent les probabilités de passage du sommet qui donne son nom à la ligne à celui qui donne son nom à la colonne. La diagonale ne contient de ce fait que des 0.

Si maintenant on s'intéresse aux probabilités de passer d'un sommet à un autre en deux pas, cela revient à calculer les coefficients de la matrice \mathbf{M}^2 . On peut généraliser ce résultat, les probabilités de passer d'un sommet à un autre en n pas correspondent aux coefficient de la matrice \mathbf{M}^n .

On obtient alors:

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix} \quad \mathbf{M}^2 = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \quad \mathbf{M}^3 = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

On constate que $\mathbf{M}^3 = \mathbf{M}$

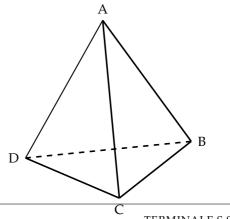
On a alors: $\mathbf{M}^{2k+1} = \mathbf{M}$ et $\mathbf{M}^{2k} = \mathbf{M}$ $\forall k \in \mathbb{N}$

On peut interpréter ce résultat (pour la première ligne) : par exemple, partant du sommet A, le personnage est sûrement en P après un nombre impair de pas, en B ou en A avec des probabilités $\frac{1}{2}$ après un nombre pair de pas.

3.2 Marche aléatoire aux sommets d'un tétraèdre

À la différence de la situation précédente, dans la marche aux sommets d'un triangle comme dans la marche aux sommets d'un tétraèdre, on peut passer, à chaque étape, de tout sommet donné à tout autre sommet donné.

On numérote les sommet A, B, C et D respectivement 1, 2, 3 et 4



Dans l'hypothèse d'équiprobabilité, la matrice de transition \mathbf{M} (donnant les probabilités de passage d'un sommet à un autre) s'écrit :

$$\mathbf{M} = \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

Si on calcule les coefficients approchés des matrices \mathbf{M}^5 et \mathbf{M}^{10} qui correspondent à des chaînes de longueurs respectives de 5 et 10, on trouve :

$$\mathbf{M}^5 = \begin{pmatrix} 0,2469 & 0,2510 & 0,2510 & 0,2510 \\ 0,2510 & 0,2469 & 0,2510 & 0,2510 \\ 0,2510 & 0,2510 & 0,2510 & 0,2510 \\ 0,2510 & 0,2510 & 0,2510 & 0,2469 \end{pmatrix} \quad \mathbf{M}^{10} = \begin{pmatrix} 0,2500 & 0,2500 & 0,2500 & 0,2500 \\ 0,2500 & 0,2500 & 0,2500 & 0,2500 \\ 0,2500 & 0,2500 & 0,2500 & 0,2500 \\ 0,2500 & 0,2500 & 0,2500 & 0,2500 \end{pmatrix}$$

Les coefficients semblent se stabiliser tous autour de la valeur 0,25. Ce qui veut dire que les différentes probabilités s'estompent rapidement. Les probabilités d'aller d'un sommet quelconque à un autre sont très voisines de 0, 25 dès que n est supérieur à 10.

Pour un résultat littéral, on peut montrer par récurrence que :

$$\mathbf{M}^{n} = \begin{pmatrix} u_{n} & v_{n} & v_{n} & v_{n} \\ v_{n} & u_{n} & v_{n} & v_{n} \\ v_{n} & v_{n} & u_{n} & v_{n} \\ v_{n} & v_{n} & v_{n} & u_{n} \end{pmatrix}$$

où les termes généraux des suites (u_n) et (v_n) sont :

$$u_n = \frac{1}{4} \left[1 - \left(-\frac{1}{3} \right)^{n-1} \right]$$
 et $v_n = \frac{1}{4} \left[1 - \left(-\frac{1}{3} \right)^n \right]$

Ces deux suites convergent vers $\frac{1}{4}$. On retrouve alors le résultat conjecturé.

3.3 Un retour en arrière est-il possible?

Ayant quitté un sommet du tétraèdre, au bout de combien de pas aléatoires le personnage peut-il compter y revenir?

Soit *X* la variable aléatoire donnant, pour chaque marche, ce nombre de pas. On a :

$$P(X = 1) = 0$$
 , $P(X = 2) = \frac{1}{3}$ et $P(X = 3) = \frac{2}{3} \times \frac{1}{3}$

En effet, pour que le personnage soit en A, par exemple, après n pas sans y avoir été dans aucune de ses positions précédentes, il est nécessaire qu'à chacun de ses déplacements précédents il soit passe d'un sommet qui n'était pas A à un autre qui n'était pas A non plus, choisissant donc l'un de deux sommets sur trois possibles.

On peut alors vérifier par récurrence que :

$$P(X = n) = \left(\frac{2}{3}\right)^{n-2} \times \frac{1}{3} \text{ pour } n \geqslant 2.$$

Ce sont les termes d'une suite géométrique (à partir du rang 2) de raison $\frac{2}{3}$ et de premier terme $\frac{1}{3}$. On peut alors calculer la somme des (n-1) termes à partir du rang 2 :

$$\sum_{k=2}^{n} P(X=k) = \frac{1}{3} \times \frac{1 - \left(\frac{2}{3}\right)^{n-1}}{1 - \frac{2}{3}} = 1 - \left(\frac{2}{3}\right)^{n-1}$$

Comme le terme au rang 1 est nul, en passant à la limite, on obtient :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} P(X = n) = 1$$

Ce qui veut dire que l'on est sur que l'on reviendra en A pourvu que l'on soit patient!

4 Traitement de l'image

4.1 Numériser les images

On a extrait l'image ci-contre d'une photographie d'Alan Turing disputant une course de 3 miles en 1946. Cette photographie a été reproduite sur un site web consacré à l'un des « inventeurs » de l'informatique dont l'adresse est donnée ci-dessous. Elle a donc été « numérisée », c'est-à-dire transformée en une suite de 0 et de 1. Le rectangle est décomposé en un certain nombre de petits carrés, et à chacun de ces carrés a été attribué un nombre qui représente une nuance de gris. La finesse de la décomposition (le nombre de carrés) est la définition de l'image. La définition de cette image particulière n'est pas bonne :

on devine les pixels (mot fabriqué avec les débuts des mots anglais picture element).

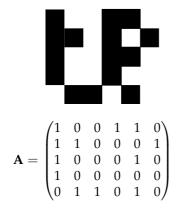
Toute image n'utilisant que le noir et le blanc peut ainsi être représentée par un tableau contenant autant de cases que l'image contient de pixels, chacune de ces cases étant occupée par 0 ou 1. L'image est donc représentée par une matrice dont tous les éléments sont 0 ou 1.

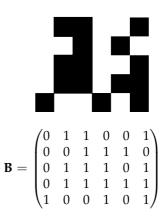
L'adresse du site consacré à Turing est :

http://www.turing.org.uk/turing/scrapbook/run.html

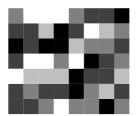
4.2 Opérations sur les images

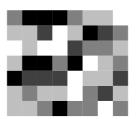
Pour trouver le négatif B de l'image A, on remplace 1 par 0 et 0 par 1 dans la matrice A





On peut également coder des images en nuances de gris en attribuant à chaque pixel un nombre compris entre 0 et 1, proche de 1 si la case est gris foncé, proche de 0 si elle est gris clair. On peut également définir l'image négatif de l'image de départ en lui associant la matrice dont les éléments sont les compléments à 1 des éléments de la matrice de départ.





Les deux images ci-dessus sont le négatif l'une de l'autre. D'autres critères peuvent être enregistrés dans les éléments de la matrice associée à une image, la luminosité par exemple. Une multiplication de tous les éléments de la matrice représentant la luminosité par un même facteur modifie la luminosité de l'ensemble. Si deux images ont le même format et la même définition (associées aux matrices A et B), il est possible de leur faire correspondre leur somme, associée à la somme des matrices qui les définissent, en convenant qu'un coefficient supérieur à 1 donne un pixel de couleur noire. On peut aussi leur faire correspondre leur différence, avec cette fois la convention que tout pixel associé à un nombre négatif est blanc, ou restituer l'image positive |A-B| en particulier pour différentier les images et faire apparaître la trame des contours, horizontaux, verticaux, obliques.