Contrôle de mathématiques Mardi 23 octobre 2012

Exercice 1

Multiples 4 points

- 1) d et n sont des entiers naturels, $d \neq 0$.
 - a) Démontrer que si d divise 3n + 4 et 9n 5, alors d divise 17. On citera le théorème utilisé.
 - b) Quelles sont les valeurs possibles pour d.
- 2) a) Montrer que tout entier relatif n, on a : $n^2 + 3n + 1 = (n-1)(n+4) + 5$
 - b) Déterminer alors les valeurs de n pour lesquelles $n^2 + 3n + 1$ est divisible par n 1.

Exercice 2

Division euclidienne 2 points

- 1) Dans la division euclidienne de deux entiers naturels, le dividende est 63 est le reste 17. Donner toutes les valeurs possibles du quotient et du diviseur.
- 2) On divise un entier naturel *n* par 152, puis par 147. Les quotients sont égaux et les restes respectifs sont 13 et 98. Quel est cet entier naturel *n*?

Exercice 3

ROC 4 points

- 1) Citer le théorème de la compatibilité de la conguence avec l'addition, la multiplication et la puisance.
- 2) **Pré-requis :** $a \equiv b \pmod{n} \Leftrightarrow a b \equiv 0 \pmod{n}$ Soit a, b, c et d quatre relatifs tels que : $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$. Montrer que : $ac \equiv bd \pmod{n}$
- 3) **Application :** démontrer que $2013^{2013} \equiv 5 \pmod{8}$

Exercice 4

Congruence 3 points

1) Compléter cette table des restes dans la congruence modulo 4

$x \equiv$	0	1	2	3
$x^2 \equiv$				

- 2) Prouver que l'équation $7x^2 4y^2 = 1$, d'inconnue x et y entiers relatifs, n'a pas de solution.
- 3) Résoudre dans \mathbb{Z} l'équation $(x+3)^2 \equiv 1 \pmod{4}$.

Exercice 5

Codage 7 points

Partie A

1) Déterminer les restes de la division euclidienne de 5^n par 11 suivant les valeurs de n. On donnera les résultats sous forme d'un tableau.

2) Déterminer les restes de la division euclidienne de 2^n par 11 suivant les valeurs de n. On donnera les résultats sous forme d'un tableau.

Partie B

Aux dix premières lettres de l'alphabet (A, B, C, D, E, F, G, G, I, J), on associe dans l'ordre les nombres entiers de 1 à 10. On note alors : $\Omega = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

- 1) Dans cette question, f est la fonction définie sur Ω par « f(n) est le reste de la division par 11 de 5^n ». À l'aide de f, on souhaite coder le message « BADGE ».
 - a) Recopier et compléter la grille de codage suivante :

Lettre	В	A	D	G	Е
n	2				
f(n)	3				
Lettre	С				

- b) Peut-on décoder le message sans ambiguité? Pourquoi?
- 2) Dans cette question , g est la fonction définie sur Ω par « g(n) est le reste de la division par 11 de 2^n ».
 - a) Compléter la grille de codage suivante après l'avoir recopier :

Lettre	A	В	С	D	Е	F	G	Н	I	J
n	1									
g(n)	2									
Lettre	В									

b) Pourquoi cette grille permet de décoder tout message sans ambiguité? Décoder alors le mot « EJIF ».