EXERCICES 3A

SUITES GEOMETRIQUES

EXERCICE 3A.1 On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 3 \times 2^n$.

- **a.** Calculer u_1 ; u_2 et u_3 .
- **b.** Exprimer u_{n+1} en fonction de n .
- **c.** Démontrer que (u_n) est une suite géométrique dont on précisera le premier terme u_0 et la raison.

EXERCICE 3A.2 On considère la suite (u_n) définie pour tout entier naturel n par $u_n = -3\left(\frac{1}{2}\right)^n$.

- **a.** Calculer u_1 ; u_2 et u_3 .
- **b.** Exprimer u_{n+1} en fonction de n .
- **c.** Démontrer que (u_n) est une suite géométrique dont on précisera le premier terme u_0 et la raison.

EXERCICE 3A.3 On considère la suite (u_n) définie pour tout entier naturel n par $u_n = -5 \times \left(-1\right)^n$

- **a.** Calculer u_1 ; u_2 et u_3 .
- **b.** Exprimer u_{n+1} en fonction de n .
- **c.** Démontrer que $\left(u_{n}\right)$ est une suite géométrique dont on précisera le premier terme u_{0} et la raison.

EXERCICE 3A.4 On considère la suite (u_n) définie pour tout entier naturel n par $u_n = n^2$ (u_n) est-elle une suite géométrique ?

EXERCICE 3A.5 On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 7^n$ (u_n) est-elle une suite géométrique ?

EXERCICE 3A.6 On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 3 \times \left(\frac{-5}{2}\right)^n$

 (u_n) est-elle une suite géométrique ?

Dans tous les exercices qui suivent, (u_n) est une suite géomtrique de raison q.
On rappelle la formule : $u_n = u_0 \times q^n$

EXERCICE 3A.7

- **a.** On donne $u_0 = -1$ et q = 2. \rightarrow Calculer u_7 .
- **b.** On donne $u_0 = 7$ et $q = \frac{1}{2}$. \rightarrow Calculer u_5 .
- **c.** On donne $u_0 = 243$ et $q = \frac{-1}{3} \rightarrow \text{Calculer } u_5$.

EXERCICE 3A.8

- **a.** On donne $u_3 = 2$ et q = 3. \rightarrow Calculer u_6 .
- **b.** On donne $u_5 = 2$ et q = -5. \rightarrow Calculer u_0 .
- **c.** On donne $u_3 = 0.01$ et $q = -10 \rightarrow \text{Calculer } u_7$.
- **d.** On donne $u_8 = 512$ et q = 2. \rightarrow Calculer u_3 .
- **e.** On donne $u_2 = \frac{3}{4}$ et $q = \frac{2}{3}$. \rightarrow Calculer u_5 .

EXERCICE 3A.9

- **a.** On donne $u_2 = 17$ et $u_3 = 51$
 - \rightarrow Calculer q puis u_5 .
- **b.** On donne $u_1 = 7$ et $u_3 = 112$
 - \rightarrow Calculer q puis u_6 .
- **c.** On donne $u_7 = 11$ et $u_{10} = 3773$
 - \rightarrow Calculer q puis u_{12} .
- **d.** On donne $u_5 = 41$ et $u_9 = 25 625$
 - \rightarrow Calculer q puis u_{10} .
- **e.** On donne $u_4 = 256$ et $u_{15} = 0,125$
 - \rightarrow Calculer q puis u_{18} .

EXERCICE 3A.10

- **a.** Soit (u_n) la suite géométrique de premier terme $u_0 = -3$ et de raison q = 2.
 - \rightarrow Calculer $u_0 + u_1 + \dots + u_{10}$.
- **b.** Soit (u_n) la suite géométrique de premier terme u_1 = 64 et de raison q = 0,5.
 - \rightarrow Calculer $u_1 + \dots + u_{12}$.
- **c.** Soit (u_n) est la suite géométrique de premier terme $u_5 = 5$ et de raison q = 0,9.
 - \rightarrow Calculer $u_5 + u_6 + \dots + u_{20}$.

EXERCICE 3A.11 Un nageur s'apprête à traverser la manche, soit une distance de 21 km. Pendant de la première heure, il parcourt 2,1 km. Mais à cause de la fatigue à chaque heure il ne

Mais à cause de la fatigue, à chaque heure il ne nage que 90% de la distance nagée pendant l'heure précédente.

- **1. a.** Déterminer une suite géométrique u_n de premier terme $u_1=2,1$ dont chaque terme correspond à la distance nagée pendant la $n^{\rm ème}$ heure.
 - **b.** Déterminer u_2 , u_5 et u_{10} .
- 2. Quelle est la distance parcourue...
 - **a.** ... en 10 heures ?
 - **b.** ... en 20 heures ?
 - c. ... en 100 heures?