CORRIGE – Notre Dame de La Merci Montpellier

EXERCICE 3B.1

Retrouver le coefficient multiplicateur q:

a. Prendre 5 %
$$\rightarrow \times \frac{5}{100}$$

b. Augmenter de 5 %
$$\rightarrow \times \left(1 + \frac{5}{100}\right) = \times 1,05$$

c. Diminuer de 5 %
$$\Rightarrow \times \left(1 - \frac{5}{100}\right) = \times 0.95$$

d. Prendre 20 %
$$\rightarrow \times \frac{20}{100}$$

e. Augmenter de 20 %
$$\rightarrow \times \left(1 + \frac{20}{100}\right) = \times 1,2$$

f. Diminuer de 20 %
$$\rightarrow \times \left(1 - \frac{20}{100}\right) = \times 0.8$$

g. Augmenter de 45 %
$$\Rightarrow \times \left(1 + \frac{45}{100}\right) = \times 1,45$$

h. Diminuer de 15 %
$$\rightarrow \times \left(1 - \frac{15}{100}\right) = \times 0.85$$

i. Augmenter de 37 %
$$\Rightarrow \times \left(1 + \frac{37}{100}\right) = \times 1,37$$

j. Diminuer de 52 %
$$\Rightarrow \times \left(1 - \frac{52}{100}\right) = \times 0,48$$

EXERCICE 3B.2

Retrouver la phrase (Augmenter/Diminuer) et le pourcentage.

a.
$$q = 0.97$$
 \rightarrow **Diminuer** de **3** %

b.
$$q = 1.08$$
 \rightarrow **Augmenter** de **8** %

c.
$$q = 0.5$$
 \rightarrow **Diminuer** de **50** %

d.
$$q = 1,4$$
 \rightarrow **Augmenter** de **40** %

e.
$$q = 2.5$$
 \rightarrow Augmenter de 150 %

f.
$$q = 0.12$$
 \rightarrow **Diminuer** de **88** %

g.
$$q = 0.99$$
 \rightarrow **Diminuer** de **1** %

h.
$$q = 1,125 \rightarrow \text{Augmenter de } 12,5 \%$$

i.
$$q = 0.71$$
 \rightarrow Diminuer de 29 %

j.
$$q = 0.873 \rightarrow$$
 Diminuer de **12,7** %

EXERCICE 3B.3

Calculer (résultats arrondis à l'unité) :

a. 267 augmenté de 25 % : $267 \times 1,25 = 333,75$

b. 267 diminué de 41 % :
$$267 \times 0.59 = 157.53$$

c. 395 augmenté de 102 % :
$$395 \times 2,02 = 797,9$$

d. 2400 augmenté de 12,5 % :
$$2400 \times 1,125 = 2700$$

e. 4500 diminué de 7,5 % :
$$4500 \times 0.925 = 4162.5$$

EXERCICE 3B.4 SUITES GEOMETRIQUES

On donne $u_0 = 500$ et q = 1,05.

a.
$$u_A = u_0 \times q^4 = 500 \times 1,05^4 \simeq 608$$

b. Compléter la phrase « Un capital de 500 € placé à 5 % par an s'élèvera à 608 € au bout de 4 ans

EXERCICE 3B.5

On donne $u_6 = 1559$ et q = 1,0375.

a.
$$u_6 = u_0 \times q^6 \iff 1559 = u_0 \times 1,0375^6$$

$$\Leftrightarrow u_0 = \frac{1559}{1,0375^6} \approx 1250,0215$$

b. Compléter la phrase « Un capital de **1 250** € placé à **3,75** % par an s'élèvera à **1 559** € au bout de **6** ans.

EXERCICE 3B.6

On donne $u_0 = 5\,000$ et $u_3 = 5\,854$.

a.
$$u_3 = u_0 \times q^3 \iff 5.854 = 5.000 \times q^3$$

$$\Leftrightarrow q^3 = \frac{5854}{5000} \Leftrightarrow q = \left(\frac{5854}{5000}\right)^{\frac{1}{3}} \approx 1,054$$

(arrondi au millième).

b. Compléter la phrase « Un capital de **5 000** € placé à **5,4** % par an s'élèvera à **5 854** € au bout de **3** ans.

EXERCICE 3B.7

Un vendeur reçoit une prime exceptionnelle de 2 000 € qu'il décide immédiatement de placer à un taux annuel de 4%.

a. Définir une suite géométrique de premier terme u_0 = 2 000 qui permette de déterminer le capital à la fin de chaque année :

$$u_n = u_0 \times q^n = 2000 \times 1,04^n$$

b. Au bout de 1 an : $u_1 = 2\ 000 \times 1,04^1 = 2\ 080 \in$

de 2 ans :
$$u_2 = 2000 \times 1,04^2 = 2163,20$$
€

de 5 ans :
$$u_5 = 2\ 000 \times 1,04^5 \approx 2\ 433,3058$$
€

de 10 ans :
$$u_{10} = 2\ 000 \times 1,04^{10} = 2\ 960,488\ 57$$
€

de 20 ans :
$$u_{20} = 2\ 000 \times 1,04^{20} \simeq 4\ 382,246\ 27$$

EXERCICE 3B.8

Un salarié vient de recevoir une prime de 1 500 € qu'il veut placer pendant 8 ans. Il hésite entre :

- le placement A: 0,7 % par mois;
- le placement B: 8,5 % par an;
- le placement C : 38% tous les 4 ans

A l'aide d'une suite géométrique que l'on précisera :

a. Calculer le capital au bout de 8 ans avec chacun des placements :

Placement A: 0,7 % par mois:

$$u_n = u_0 \times q^n = 1500 \times 1,007^n$$

$$8 \text{ ans} = 8 \times 12 = 96 \text{ mois}$$

$$\rightarrow u_{96} = 1500 \times 1,007^{96} \approx 2930,356$$
€

Placement B: 8,5 % par an:

$$u_n = u_0 \times q^n = 1500 \times 1,085^n$$

$$u_8 = u_0 \times q^8 = 1500 \times 1,085^8 \simeq 2880,907 \in$$

Placement C: 38 % tous les 4 ans:

$$u_n = u_0 \times q^n = 1500 \times 1,38^n$$

$$u_2 = u_0 \times q^2 = 1500 \times 1,38^2 = 2856,60 \in.$$

b. Calculer le taux annuel des placements A et C.

Placement A: 0,7 % par mois:

Le taux annuel est obtenu par : $1,007^{12} \approx 1,087 \ 3$

→soit un taux moyen de 8,73 % par an.

Placement C: 38 % tous les 4 ans:

Soit t le taux annuel du placement C :

$$\left(1 + \frac{t}{100}\right)^4 = 1,38 \iff 1 + \frac{t}{100} = 1,38^{\frac{1}{4}}$$

$$\Leftrightarrow \frac{t}{100} = 1,38^{\frac{1}{4}} - 1 \approx 0,0839$$

→soit un taux moyen de 8,39 % par an.

EXERCICE 3B.9

Un vendeur reçoit chaque année une prime de 1 000 € qu'il place systématiquement, toujours à un taux annuel de 5%.

L e capital à la fin de chaque année est déterminé par une suite géométrique de premier terme $u_0 = 1\,000\,$ et de raison $1,05:1,04\,$

$$u_n = u_0 \times q^n = 1000 \times 1,05^n$$

a. Au bout de 1 an : $u_1 = 1000 \times 1,05^1 = 1050 \in$

de 2 ans :
$$u_2 = 1000 \times 1,05^2 = 1102,50$$
 €

de 3 ans :
$$u_3 = 1000 \times 1,05^3 = 1157,625$$
€

b. Au bout de 20 ans :

$$u_{20} = 1\,000 \times 1,05^{20} \simeq 2\,653,2977 \in$$