DERIVATION D'UNE FONCTION EN UN POINT

RAPPEL: dérivées des fonctions usuelles

f(x) = k(constante)

$$f(x) = ax + b$$

 $f(x) = x^n$

$$f(x) = \frac{1}{x^n}$$
 $f(x) = \sqrt{x}$

fonction dérivée :

f'(x) = 0

$$f'(x) = a$$

$$f'(x) = \frac{-n}{x^{n+1}}$$

- f'(x) = a $f'(x) = nx^{n-1}$ $f'(x) = \frac{-n}{x^{n+1}}$ $f'(x) = \frac{1}{2\sqrt{x}}$

Dans cette fiche, on va utiliser les formules suivantes :

- **9** La fonction dérivée de $\frac{\mathbf{u}}{\mathbf{v}}$ est la fonction $\frac{\mathbf{u'} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{v'}}{\mathbf{v'}^2}$
- **6** La fonction dérivée de $\frac{1}{11}$ est la fonction $\frac{-\mathbf{u}'}{11^2}$

EXERCICE 4C.1

Déterminer la dérivée de la fonction f (sous la forme $\frac{1}{11}$) sur l'intervalle I.

1.
$$f(x) = \frac{1}{5x+3}$$
, $I = \mathbb{R}$

u(x) =

$$u'(x) =$$

Donc f'(x) =

2.
$$f(x) = \frac{1}{1 - 3x}$$
, $I = \mathbb{R}$

u(x) =

$$u'(x) =$$

Donc f'(x) =

3.
$$f(x) = \frac{1}{2x^3 + 1}$$
, $I = \mathbb{R}$

$$u'(x) =$$

Donc f'(x) =

4.
$$f(x) = \frac{1}{x^2 - 3x}$$
, $I = \mathbb{R}$

$$u'(x) =$$

Donc f'(x) =

5.
$$f(x) = \frac{1}{x^4 + 2x}$$
, $I = \mathbb{R}$

$$u'(x) =$$

Donc f'(x) =

4.
$$f(x) = \frac{1}{x^2 - 3x}$$
, $I = \mathbb{R}$ **5.** $f(x) = \frac{1}{x^4 + 3x}$, $I = \mathbb{R}$ **6.** $f(x) = \frac{1}{1 + \sqrt{x}}$, $I = [0; +\infty[$

$$u(x) =$$

$$u'(x) =$$

Donc f'(x) =

EXERCICE 4C.2

Déterminer la dérivée de la fonction f (sous la forme $\frac{u}{v}$) sur l'intervalle I.

$$1. f(x) = \frac{\sqrt{x}}{x} ,$$

 $I = [0; +\infty[$

$$u(x) = u'(x) =$$

$$v(x) = v'(x) =$$

2.
$$f(x) = \frac{2x-3}{5x+1}$$
,

$$I = \mathbb{R}$$

$$u(x) =$$

$$v(x) =$$

$$u'(x) =$$

$$v'(x) =$$

Donc
$$f'(x) =$$

Donc f'(x) =

$$3. f(x) = \frac{x}{1+x} ,$$

 $I = [0; +\infty[$

$$u(x) =$$

$$v(x) =$$

$$u'(x) =$$

v'(x) =

4. $f(x) = \frac{x-1}{x^2 - 3x - 4}$,

 $I = \mathbb{R}/\{-1;4\}$

$$v(x) =$$

$$u(x) =$$

$$v(x) =$$

$$u'(x) =$$

Donc
$$f'(x) =$$

Donc f'(x) =