BACCALAURÉAT BLANC

DE MATHÉMATIQUES

- SÉRIE S -

Durée de l'épreuve : 4 HEURES Les calculatrices sont AUTORISÉES

Coefficient: 7 ou 9

- Le candidat doit traiter trois exercices plus un exercice suivant sa spécialité.
- La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.
- Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Sur l'en-tête de votre copie, précisez clairement et distinctement :

- ▶ le nom de l'épreuve : épreuve de mathématiques.
- ▶ votre spécialité : mathématique, physique ou SVT.

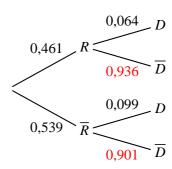
Exercice 1 (5 points)

Les trois parties sont indépendantes.

Partie 1 Les résultats des probabilités seront arrondis à 10^{-3} près.

1)
$$p(R) = 0461$$
, $p(\overline{R}) = 0,539$, $p_{\overline{R}}(D) = 0,099$, $p_R(D) = 0,064$.

On obtient l'arbre suivant :



2) a)
$$p(D) = p(R \cap D) + p(\overline{R} \cap D) = p(R) \times p_R(D) + p(\overline{R}) \times p_{\overline{R}}(D)$$

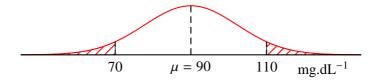
= 0, 461 × 0, 064 + 0, 539 × 0, 099 ≈ 0, 083.

b)
$$p_D(R) = \frac{p(R \cap D)}{p(D)} = \frac{0,461 \times 0,064}{0,083} \approx 0,355$$

Partie 2 Les résultats des probabilités seront arrondis à 10^{-3} près.

1)
$$p(X > 110) = 0,052$$
,

du fait de la symétrie, par rapport à 90, de la loi normale, p(X < 70) = p(X > 110) = 0,052



$$p(70 \le X \le 110) = p(X \le 110) - p(X < 70) = 1 - p(X > 110) - p(X < 70)$$
$$= 1 - 2p(X > 110) = 1 - 2 \times 0,052 = 0,896$$

2) On revient à la loi normal centrée réduite en posant : $Z = \frac{X - 90}{\sigma}$

$$p(X < 70) = 0,052 \iff \left(Z < \frac{70 - 90}{\sigma}\right) = 0,052 \iff p\left(Z < -\frac{20}{\sigma}\right) = 0,052$$

$$\Phi\left(-\frac{20}{\sigma}\right) = 0,052 \iff -\frac{20}{\sigma} = \Phi^{-1}(0,052) \iff \sigma = -\frac{20}{\Phi^{-1}(0,052)} \approx 12,3$$

3)
$$p(X < 60) = \text{NormalFRép}(-10^{99}, 60, 90, 12) \approx 0,006$$

Partie 3 Les résultats des probabilités seront arrondis à 10^{-4} près.

1)
$$E(T) = 10^4 \Leftrightarrow \frac{1}{\lambda} = 10^4 \Leftrightarrow \lambda = 10^{-4} = 0,000 \text{ 1}$$

2)
$$P(T \ge 5\,000) = e^{-5\,000\lambda} = e^{-5\,000 \times 10^{-4}} = e^{-0.5} \approx 0,6065.$$

3)
$$p_{T \ge 7000}(T \ge 12000) = p(T \ge 12000 - 7000) = p(T \ge 5000) \approx 0,6065$$

Exercice 2 (5 points)

Partie A: Modélisation discrète

1) On trouve comme valeurs:

• 3 minutes : $T \approx 54$ °C

• 5 minutes : $T \approx 67^{\circ}$ C

2) Soit la proposition : $T_n = 100 - 75 \times 0,85^n$.

Montrons cette proposition par récurrence :

Initialisation : n = 0, $100 - 75 \times 0$, $85^0 = 100 - 75 = 25 = T_0$. La proposition est initialisée.

Hérédité : Soit $n \in \mathbb{N}$,

on suppose que $T_n = 100 - 75 \times 0,85^n$, montrons que $T_{n+1} = 100 - 75 \times 0,85^{n+1}$.

D'après l'algorithme, on a : $T_{n+1} = 0,85T_n + 15$

D'après l'hypothèse de récurrence : $T_{n+1} = 0,85(100 - 75 \times 0,85^n) + 15.$

On a donc $T_{n+1} = 85 - 75 \times 0, 85^{n+1} + 15 = 100 - 75 \times 0, 85^{n+1}$

La proposition est héréditaire.

Conclusion : par initialisation et hérédité : $\forall n \in \mathbb{N}, T_n = 100 - 75 \times 0, 85^n$.

3) La stérilisation débute si $T_n > 85$

$$100 - 75 \times 0,85^n > 85 \iff -75 \times 0,85^n > -15 \iff 0,85^n < \frac{15}{75} \left(= \frac{1}{5} \right) \Leftrightarrow$$

La fonction ln étant monotone sur $[0; +\infty[$,

$$n \ln 0.85 < -\ln 5 \iff n > -\frac{\ln 5}{\ln 0.85} \iff n > 9.9$$

La stérilisation débute au bout de 10 minutes.

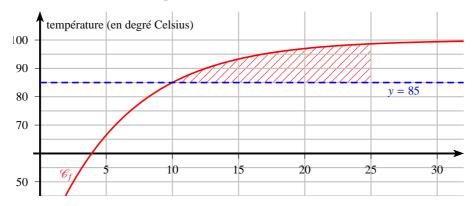
Partie B: Modélisation continue

1) a) On dérive : $f'(x) = \frac{75 \ln 5}{10} e^{-\frac{\ln 5}{10}t}$ or $\frac{75 \ln 5}{10} > 0$ et $\forall t \in [0; +\infty[, e^{-\frac{\ln 5}{10}t} > 0]$.

 $\forall t \in [0; +\infty[, f'(x) > 0, \text{ la fonction } f \text{ est croissante sur } [0; +\infty[.$

b)
$$t \ge 10 \stackrel{f}{\Leftrightarrow} f(t) \ge f(10) \Leftrightarrow f(t) \ge 100 - 75 e^{-\frac{10 \ln 5}{10}} \Leftrightarrow f(t) \ge 100 - 75 e^{-\ln 5} \stackrel{e^{-\ln 5} = \frac{1}{5}}{\Leftrightarrow} f(t) \ge 100 - \frac{75}{5} \Leftrightarrow f(t) \ge 85$$

2) a) On doit minorer l'aire délimitée par \mathscr{C} , la droite y=85 et les droites x=10 et x=25



L'aire $\mathcal{A}(25)$ est minorée par 3,5 rectangles dont l'aire est $5 \times 5 = 25$ u.a. $\mathcal{A}(25)$ est donc minorée par $3, 5 \times 25 = 87, 5 > 80$.

b)
$$g(t) = f(t) - 85 = 15 + 75 e^{-\frac{\ln 5}{10}t} = 15 - 75 \left(-\frac{10}{\ln 5}\right) \times \left(-\frac{\ln 5}{10} e^{-\frac{\ln 5}{10}t}\right).$$

or $\int u'e^u = e^u$ donc $G(t) = 15t + \frac{750}{\ln 5} e^{-\frac{\ln 5}{10}t}$
c) $\mathscr{A}(20) = \int_{10}^{20} g(t) dt = \left[G(t)\right]_{10}^{20} = 15(20-10) + \frac{750}{\ln 5} \left(e^{-2\ln 5} - e^{-\ln 5}\right) = 150 + \frac{750}{\ln 5} \left(\frac{1}{25} - \frac{1}{5}\right)$

 $= 150 - \frac{3000}{25 \ln 5} \approx 75,44 < 80.$ La stérilisation n'est donc pas finie au bout de 20 minutes.

Exercice 3 (5 points)

1)
$$|a| = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3}$$
 et $\cos \theta = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}$ $\sin \theta = \frac{-3}{2\sqrt{3}} = -\frac{\sqrt{3}}{2}$ $\theta = -\frac{\pi}{3}$ [2 π], $a = 2\sqrt{3}e^{-\frac{\pi}{3}}$.

2) a)
$$z_1 = 1 - \frac{1}{z_0} = 1 - \frac{1}{2} = \frac{1}{2}$$
.
 $z_2 = 1 - \frac{1}{z_1} = 1 - 2 = -1$
 $z_3 = 1 - \frac{1}{z_2} = 1 + 1 = 2 = z_0$
On déduit alors $z_4 = z_1 = \frac{1}{2}$, $z_5 = z_2 = -1$ et $z_6 = z_3 = z_0 = 2$.

b)
$$z_1 = 1 - \frac{1}{z_0} = 1 - \frac{1}{i} = 1 + i$$
.
 $z_2 = 1 - \frac{1}{z_1} = 1 - \frac{1}{1+i} = 1 - \frac{1-i}{2} = \frac{1+i}{2}$
 $z_3 = 1 - \frac{1}{z_2} = 1 - \frac{2}{1+i} = 1 - \frac{2(1-i)}{2} = 1 - (1-i) = i = z_0$

On déduit alors $z_4 = z_1 = 1 + i$, $z_5 = z_2 = \frac{1+i}{2}$ et $z_6 = z_3 = z_0 = i$.

c) On peut conjecturer que : $\forall n \in \mathbb{N}, z_{3n} = z_0$.

Prouvons cette conjecture par récurrence.

Initialisation : : n = 0, immédiat $z_0 = z_0$. la proposition est initialisée.

Hérédité: Soit $n \in \mathbb{N}$, on suppose que $z_{3n} = z_0$, montrons que $z_{3(n+1)} = z_{3n+3} = z_0$.

$$z_{3n+1} = 1 - \frac{1}{z_{3n}} \stackrel{\text{HR}}{=} 1 - \frac{1}{z_0} = \frac{z_0 - 1}{z_0}$$

$$z_{3n+2} = 1 - \frac{1}{z_{3n+1}} = 1 - \frac{z_0}{z_0 - 1} = \frac{z_0 - 1 - z_0}{z_0 - 1} = -\frac{1}{z_0 - 1}.$$

$$z_{3n+3} = 1 - \frac{1}{z_{3n+2}} = 1 + (z_0 - 1) = z_0.$$

La proposition est héréditaire.

Conclusion : par initialisation et hérédité : $\forall n \in \mathbb{N}, z_{3n} = z_0$.

d) $2016 = 3 \times 672$, donc $z_{2016} = z_{3 \times 672} = z_0 = 1 + i$.

e)
$$z_0 = z_1 \iff z_0 = 1 - \frac{1}{z_0} \iff z_0^2 = z_0 - 1 \iff z_0^2 - z_0 + 1 = 0.$$

 $\Delta = 1 - 4 = -3 = (i\sqrt{3})^2$, on a $\Delta < 0$, deux racines complexes conjuguées :

$$z'_0 = \frac{1 + i\sqrt{3}}{2}$$
 et $z''_0 = \frac{1 - i\sqrt{3}}{2}$

La suite (z_n) est alors constante.

Exercice 4 (5 points)

Candidats n'ayant pas suivi l'enseignement de spécialité

1) a) Limite en 0⁺. De $\lim_{x\to 0^+} \ln x = -\infty$

$$\lim_{x \to 0^+} 2 + 2 \ln x = -\infty$$

$$\lim_{x \to 0^+} x = 0^+$$
Par quotient
$$\lim_{x \to 0^+} f(x) = -\infty$$

Limite en $+\infty$: $f(x) = \frac{2}{x} + 2 \times \frac{\ln x}{x}$.

 $\lim_{x \to +\infty} \frac{2}{x} = 0 \text{ et } \lim_{x \to +\infty} \frac{\ln x}{x} = 0, \text{ par produit et somme } \lim_{x \to +\infty} f(x) = 0.$

b)
$$f'(x) = \frac{\frac{2}{x} \times x - (2 + 2 \ln x)}{x^2} = \frac{2 - 2 - 2 \ln x}{x^2} = \frac{-2 \ln x}{x^2}$$
.

Comme $\forall x \in]0$; $+\infty[$, $x^2 > 0$, alors f'(x) est du signe de $-\ln x$ sur]0; $+\infty[$.

c)
$$f'(x) = 0 \Leftrightarrow \ln x = 0 \Leftrightarrow x = 1$$
.

On obtient le tableau de variation suivant :

x	0		1	+0	0
f'(x)		+	0	_	
f(x)	-∞		, ²	0	

- 2) Sur l'intervalle [0; 1]:
 - f est continue car dérivable;
 - f est monotone (f est croissante)
 - 1 est compris entre $\lim_{x \to 0^+} f(x) = -\infty$ et f(1) = 2

D'après le théorème des valeurs intermédiaires, l'équation f(x) = 1 admet une unique solution α sur [0; 1].

On trouve $f(0,4) \approx 0.41$ donc $0.4 < \alpha < 1$. on rentre la fonction g(x) = f(x) - 1

Par l'algorithme de dichotomie, on trouve $0,463 < \alpha < 0,464$ après 10 itérations.

3)
$$f(x) = \frac{2}{x} + 2 \times \frac{1}{x} \times \ln x = \frac{2}{x} + 2 \times u'(x)u(x)$$
 avec $u(x) = \ln x$.

De
$$\int u'u = \frac{u^2}{2}$$
, $F(x) = 2 \ln x + \ln^2 x = \ln x(2 + \ln x)$.

$$\int_{\frac{1}{e}}^{1} f(x) dx = \left[F(x) \right]_{\frac{1}{e}}^{1} = 2 \ln 1 + \ln^2 1 - \left(2 \ln \frac{1}{e} + \ln^2 \frac{1}{e} \right) = 0 - (-2 \ln e + (-\ln e)^2) = 2 - 1 = 1$$

Paul Milan 5 Tournez la page s.v.p.

Exercice 4 (5 points)

Candidats ayant suivi l'enseignement de spécialité

1)
$$u_2 - u_1 = 0, 9(u_1 - u_0) = 0, 9(5, 1 - 5) = 0, 09 \implies u_2 = u_1 + 0, 09 = 5, 1 + 0, 09 = 5, 19.$$

2) a) $u_{n+2} - u_{n+1} = 0, 9(u_{n+1} - u_n) \Leftrightarrow u_{n+2} = 1, 9u_{n+1} - 0, 9u_n$.

$$\mathbf{AV}_n = \begin{pmatrix} 1, 9 & -0, 9 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = \begin{pmatrix} 1, 9u_{n+1} - 0, 9u_n \\ u_{n+1} \end{pmatrix} = \begin{pmatrix} u_{n+2} \\ u_{n+1} \end{pmatrix} = \mathbf{V}_{n+1}.$$

b) $\det(\mathbf{P}) = \begin{vmatrix} 0.9 & 1 \\ 1 & 1 \end{vmatrix} = 0, 9 - 1 = -0, 1$. Comme $\det(\mathbf{P}) \neq 0$, la matrice \mathbf{P} est inversible.

$$\mathbf{P}^{-1} = \frac{1}{\det(\mathbf{P})} \begin{pmatrix} 1 & -1 \\ -1 & 0, 9 \end{pmatrix} = -\frac{1}{0, 1} \begin{pmatrix} 1 & -1 \\ -1 & 0, 9 \end{pmatrix} = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix}.$$

c)
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix} \begin{pmatrix} 1, 9 & -0, 9 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0, 9 & 1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -19 + 10 & 9 + 0 \\ 19 - 9 & -9 + 0 \end{pmatrix} \begin{pmatrix} 0, 9 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -9 & 9 \\ 10 & -9 \end{pmatrix} \begin{pmatrix} 0, 9 & 1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -8, 1 + 9 & -9 + 9 \\ 9 - 9 & 10 - 9 \end{pmatrix} = \begin{pmatrix} -0, 9 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{D}$$

d) $PDP^{-1} = P(P^{-1}AP)P^{-1} = (PP^{-1})A(PP^{1}) = A$ (1).

Montrons par récurrence : $\forall n \in \mathbb{N}, A^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$.

Initialisation: $PD^0P^{-1} = PIP^{-1} = PP^{-1} = I = A^0$.

La proposition est initialisée.

Hérédité: Soit $n \in \mathbb{N}$, supposons que $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, montrons que $\mathbf{A}^{n+1} = \mathbf{P}\mathbf{D}^{n+1}\mathbf{P}^{-1}$.

 $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, on multiplie à gauche par \mathbf{A} :

$$\mathbf{A}\mathbf{A}^{n} = \mathbf{A} \times \mathbf{P}\mathbf{D}^{n}\mathbf{P}^{-1} \stackrel{(1)}{=} (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})(\mathbf{P}\mathbf{D}^{n}\mathbf{P}^{-1})$$

$$A^{n+1} = PD(P^{-1}P)D^{n}P^{-1} = PDID^{n}P^{-1} = PDD^{n}P^{-1} = PD^{n+1}P^{-1}$$

La proposition est héréditaire.

Conclusion : par initialisation et hérédité, $\forall n \in \mathbb{N}$, $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$.

e)
$$\mathbf{V}_n = \mathbf{A}^n \mathbf{V}_0 = \begin{pmatrix} -10 \times 0, 9^{n+1} + 10 & 10 \times 0, 9^{n+1} - 9 \\ -10 \times 0, 9^n + 10 & 10 \times 0, 9^n - 9 \end{pmatrix} \begin{pmatrix} 5, 1 \\ 5 \end{pmatrix}$$
.

On calcule le 2^e coefficient de V_n :

$$u_n = 5, 1(-10 \times 0, 9^n + 10) + 5(10 \times 0, 9^n - 9) = -51 \times 0, 9^n + 51 + 50 \times 0, 9^n - 45 = 6 - 0, 9^n$$

3) $u_{10} = 6 - 0,9^{10} \approx 5,651.$

La taille de la colonie au bout du 10^e jour est de 5 651 fourmis.

4) $\lim_{n \to +\infty} 0, 9^n = 0$ car -1 < 0, 9 < 1, par somme $\lim_{n \to +\infty} u_n = 6$.

La colonie de fourmis tendra vers 6 000 fourmis à partir d'un certain nombre de jours.