TP 15-b Etude de mouvement / principe d'inertie

LE TP est noté, appeler le professeur régulièrement pour vérification, on pourra s'aider du chapitre 15 et du chapitre 8 d'exovideo.

Données:

- la force exercée par un ressort est appelée tension du ressort. Elle est notée $\vec{\mathsf{T}}$
- l'intensité du champ de pesanteur terrestre vaut q = 10 N/kg

I) Détermination de la valeur de la tension T du ressort

Ressort E

Masse 'm'

1) schéma de l'expérience

On considère un ressort au bout duquel on fixe une masse m=200 g. Le ressort est fixé sur le point E, le centre d'inertie du solide est noté G. On étudiera le système mécanique « solide de masse m ».

2) étude mécanique

- Q1 Quelles sont les forces qui s'exercent sur le solide de masse m? S'agit-il de forces de contact ou de force à distance?
- Q2 Enoncer le principe d'inertie.
- Q3 D'après le principe d'inertie que dire de la somme vectorielle des forces s'exerçant sur le solide au repos ? Que peut-on en déduire sur la norme de ces 2 forces ?
- Q4 Calculer le poids P de la masse m (ne pas oublier que l'unité légale de masse est le kilogramme). En déduire la norme de la force exercée par le ressort sur la masse.
- Q5 Représenter les 2 forces s'exerçant sur le solide sur le schéma avec l'échelle 1cm

représente 1 N Appeler le professeur **(appel 1)**.

II) Détermination de la raideur 'k' du ressort

1) étude expérimentale

Le ressort à étudier est accroché à une potence. À l'extrémité libre appelée E , on suspend successivement des masses de différentes valeurs . Mesurer la longueur L_{\circ} du ressort à vide (quand on ne lui suspend aucune masse à son extrémité). Pour chaque masse 'm' mesurer la longueur du ressort L et en déduire son allongement L-L $_{\circ}$ en centimètre.

Q1 Compléter le tableau ci-dessous. On rappelle que 1 $g = 10^{-3}$ kg et 1 cm = 10^{-2} m.

m(g)	0	50	100	150	200
m(kg)	0				
L- L _o (cm)	0				
L-L _o (m)	0				
valeur de la tension T du ressort :	0				
T = P donc					
T = m(kg).g(N/kg)					

Q2 Comment varie la tension T du ressort quand son allongement L-L_o augmente ? Appeler le professeur (appel 2)

3) Tracé de la courbe tension T en fonction de l'allongement L-L.

Q3 : A l'aide du tableur Excel vous aller tracer la courbe de la tension T(N) en fonction de l'allongement L-L_o (m). Vous reprendrez les valeurs trouvées dans la question précédente. Vous en déduirez ensuite la relation mathématique entre T(N) et l'allongement L-L_o(m).

Ouvrir le logiciel Excel (cliquer en bas à gauche de l'écran et, dans le menu rechercher, écrire Excel). Entrer les données : la règle d'or : sur la ligne n°1 entrer les valeurs des abscisses (L-L_o), sur la ligne 2 la valeur des

ordonnées, T(N). Entrer les valeurs correspondantes a votre tableau de mesure. Tracer la courbe représentative de la fonction T(N) en fonction de l'allongement : sélectionner les 2

premières lignes. Cliquer sur **insertion**, **nuage de points** choisir, par exemple, le type de graphique un titre à ta courbe : clique sur **disposition** (barre de menu), puis **titre du graphique** et **au-dessus du graphique**.

Ecrire le titre suivant: tension du ressort en fonction de son allongement. Changer éventuellement la police de caractère ainsi que sa taille. Donne un titre aux axes horizontaux et verticaux : clique sur disposition, titre des axes puis donner à l'axe vertical le nom T(N) et à l'axe horizontal le titre $L-L_o(m)$. Ajouter un quadrillage secondaire vertical et horizontal : clique sur le graphique puis sur disposition puis sur quadrillage et ajoute un quadrillage principal et secondaire sur les 2 axes.

Q4 Au vu de la courbe obtenue, Comment appelle-t-on la fonction liant T(N) et L-L_O(m)? Appeler le professeur pour vérification (appel 3).

4) expression de la tension T en fonction de l'allongement

Calcul automatique de l'équation de la droite : Clique sur un point de la courbe puis choisir ajouter une courbe de tendance , puis afficher l'équation sur le graphique. Noter l'équation liant T et L- L_{\circ} .

Q5 l'équation est de la forme y = a.x Que représentent y, x et a? En déduire la relation liant T et L-L_o. Q6 En déduire l'expression littérale de la constante de raideur k puis sa valeur numérique. Déterminer l'unité de cette constante dans le système international et expliquer à quoi correspond la raideur k du ressort

groupe	Q1 2 forces	Q2 PI	Q3 forces se compensent	Q4 P= 2N	Q5 représentation des forces	Q1 tableau de mesure	Q2 évolution de T	Q3 courbe	Q4 fonction linéaire	Q5 y= T, a = k, x = L-L ₀	Q6 K = ?