
Page: 1/2

I. <u>Débit ventilatoire</u> (4,5 points)

- 1) L'enregistrement spirographique est périodique car on observe un motif élémentaire qui se répète au cours du temps.
- 2) La valeur minimale du signal est Vmin = -0.5 L; La valeur maximale du signal est Vmax = 1.9 L. Le volume V de la cage thoracique du patient est donc V = Vmax Vmin = 2.4 L
- 3) Il faut déterminer la période T du signal. Pour plus de précisions, on prend plusieurs périodes

Pour 3 périodes, la durée est $\Delta t = 8.7$ s soit $T = \frac{8.7}{3} = 2.9$ s

La fréquence du signal est $f = \frac{1}{T} = \frac{1}{2,9} = 0,34$ Hz soit 0,34 cycles par seconde

La fréquence respiratoire est donc de $0.34 \times 60 = 21$ cycles par minute. Elle correspond à celle d'un enfant.

II. Solutions de perfusion glucosées (10 points)

1. Questions de connaissances

- **1.1.** $C = \frac{n}{V}$ avec C en mol. L^{-1} si n en mol et V en L
- **1.2.** Le nom de l'opération à réaliser pour réaliser cette solution est une **dissolution**.
- **1.3.** Le glucose pour cette solution est le **soluté**.
- **1.4.** L'eau pour cette solution est le **solvant**.

2. Réalisation de la solution

2.1. Ordonner ci-dessous, à l'aide des lettres, les opérations permettant de préparer la solution.

	· ·							
Ordre	1	2	3	4	5	6	7	8
Lettre	E	G	D	В	G	C	F	A

2.2. Le matériel utilisé lors de l'opération A est une fiole jaugée.

3. Quelques calculs

- **3.1.** $M(glucose) = 6 M(C) + 12 M(H) + 6 M(O) = 6 \times 12,0 + 12 \times 1,00 + 6 \times 16,0$; $M(glucose) = 180 g.mol^{-1}$
- **3.2.** La quantité de glucose est $n = C \times V$; la masse de glucose à peser est $m = n \times M$ soit $m = C \times V \times M$ $m = 0.15 \times 0.0500 \times 180 = 1.35$ g.
- **3.3.** La concentration massique $C_M = C \times M$; $C_M = 0.15 \times 180$ soit $C_M = 27$ g.L⁻¹

III. Food coloring agents (3 points)

- 1) Dans 1,0 L de sirop, il y a 3,5 \times 10⁻⁴ mol de tartrazine donc la masse correspondante est m = n \times M m = 3,5 \times 10⁻⁴ \times 534 = 0,19 g de tartrazine
- 2) Un consommateur peut consommer 7,5 mg par kg de masse corporelle par jour. Un consommateur de 50 kg peut donc consommer 7,5 mg \times 50 = 375 mg = 0,375 g par jour.
- 3) Il y a 0,19 g de tartrazine pour 1,0 L de sirop Pour 0,375 g de tartrazine, il faut boire $\frac{0,375}{0,19} \approx 2$ L de sirop par jour.
- 4) Le sirop est dilué 8 fois donc le volume correspondant est de $2 \times 8 = 16$ L de sirop dilué par jour ce qui est énorme.

IV. Masse volumique (2,5 points)

	Flacon A	Flacon B	Flacon C	
masse de chaque liquide (g)	506 – 131	220 – 131	392 – 131	
masse de chaque nquide (g)	= 375 g	$=89 \mathrm{g}$	= 261 g	
masse volumique des liquides (g.mL ⁻¹)	$=\frac{375}{250}=1,50$	$\frac{89}{125} = 0,712$	$=\frac{261}{330}=0,791$	
Identifier chaque liquide	Trichloréthylène	Éther	Méthanol	

Question Bonus (0,5 point)

• Écrire un seul mot avec les lettres suivantes : N O T U L U S E M : UN SEUL MOT

	1	1	2						
I	2	1	2	3				U-CV-CHS	
	3	1	2	3	4			U-CV-CHS	/9
	1.1	1	2	3	4				
	1.2	1							
	1.3	1							
	1.4	1							
II	2.1	1	2	3	4				
	2.2	1							
	3.1	1	2					U-CV-CHS	
	3.2	1	2	3	4			U-CV-CHS	
	3.3	1	2					U-CV-CHS	/20
	1	1	2					U-CV-CHS	
III	2	1						U-CV-CHS	
111	3	1							
	4	1	2					U-CV-CHS	/6
IV		1	2	3	4	5			/5
Bonus		1							/1
Total :/41									
<u>NOTE</u> (Total/2) :/20									