CORRIGE – LA MERCI

EXERCICE 7B.1

Sans effectuer le moindre calcul, et uniquement en étudiant la proportionnalité des coordonnées, dire si les vecteurs suivants sont colinéaires (si c'est le cas,

on justifiera par l'égalité $\vec{u} = \overset{\rightarrow}{\lambda v}$ ou $\vec{v} = \overset{\rightarrow}{\lambda u}$):

a.
$$\overrightarrow{u} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 8 \\ 6 \end{pmatrix}$: $\overrightarrow{v} = 2\overrightarrow{u}$: ils sont colinéaires

b.
$$\stackrel{\rightarrow}{u} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 et $\stackrel{\rightarrow}{v} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$

c.
$$\overrightarrow{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -4 \\ 2 \end{pmatrix}$: $\overrightarrow{v} = -2\overrightarrow{u}$: colinéaires

d.
$$\vec{u} \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 8 \end{pmatrix}$

e.
$$\overrightarrow{u} \begin{pmatrix} 10 \\ -15 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$:

EXERCICE 7B.2 \vec{u} et \vec{v} sont-ils colinéaires ?

$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 6 \\ -10 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} -3 \\ 5 \end{array} \right)$ $6 \times 5 - \left(-3 \right) \times \left(-10 \right) = 0$: **OUI**

$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 12 \\ 16 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} 30 \\ 40 \end{array} \right)$ 12×40-16×30=0 : **OUI**

$$\overrightarrow{u}$$
 $\begin{pmatrix} 5 \\ -7 \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} 21 \\ 15 \end{pmatrix}$ $5 \times 15 - (-7) \times 21 = 222$: NON

$$\stackrel{\rightarrow}{u}$$
 $\begin{pmatrix} 21\\28 \end{pmatrix}$ et $\stackrel{\rightarrow}{v}$ $\begin{pmatrix} 15\\21 \end{pmatrix}$ $21 \times 21 - 15 \times 28 = 21$: NON

$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 24 \\ -18 \end{array} \right) \stackrel{\rightarrow}{v} \left(\begin{array}{c} -16 \\ 12 \end{array} \right) 24 \times 12 - \left(-16 \right) \times \left(-16 \right) = 32 \text{ NON}$$

EXERCICE 7B.3 On considère les points suivants :

a.
$$\overrightarrow{AC} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$$
 et $\overrightarrow{ED} \begin{pmatrix} 6 \\ -3 \end{pmatrix}$

$$6 \times (-3) - 6 \times (-2) = -6$$
: non colinéaires

b.
$$\overrightarrow{\mathsf{FB}} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 et $\overrightarrow{\mathsf{EF}} \begin{pmatrix} -3 \\ -9 \end{pmatrix}$

$$\overrightarrow{\mathsf{EF}} = -1.5 \; \overrightarrow{\mathsf{FB}} : \mathsf{ils} \; \mathsf{sont} \; \mathsf{colin\'eaires}$$

c.
$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
 et $\overrightarrow{BG} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$

d.
$$\overrightarrow{FC}$$
 $\begin{pmatrix} 6 \\ 8 \end{pmatrix}$ et \overrightarrow{EG} $\begin{pmatrix} 2 \\ -9 \end{pmatrix}$

$$6 \times (-9) - 2 \times 8 = -70$$
: non colinéaires

e.
$$\overrightarrow{AE} \begin{pmatrix} 7 \\ -1 \end{pmatrix}$$
 et $\overrightarrow{ED} \begin{pmatrix} 6 \\ -3 \end{pmatrix}$

$$7 \times (-3) - (-1) \times 6 = -15$$
: non colinéaires

EXERCICE 7B.4

a.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} x \\ 2 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} -4 \\ 1 \end{array} \right)$ colinéaires

$$\Leftrightarrow x \times 1 - (-4) \times 2 = 0 \Leftrightarrow x = -8$$

b.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 2+x \\ -3 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} -2 \\ 3 \end{array} \right)$ colinéaires

$$\Leftrightarrow$$
 $(2+x)\times3-(-3)\times(-2)=0$

$$\Leftrightarrow 3x+6-6=0 \Leftrightarrow x=0$$

EXERCICE 7B.5

On considère les points :

a.
$$\overrightarrow{AB} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{AM} \begin{pmatrix} x-2 \\ 4 \end{pmatrix}$ colinéaires

$$\Leftrightarrow 3 \times 4 - 2(x-2) = 0$$

$$\Leftrightarrow$$
 12-2x+4=0 \Leftrightarrow x=8

b.
$$\overrightarrow{AB} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{BN} \begin{pmatrix} -9 \\ y+1 \end{pmatrix}$ colinéaires

$$\Leftrightarrow$$
 3(y+1)-2×(-9)=0

$$\Leftrightarrow$$
 3y+3+18=0 \Leftrightarrow y=-7

EXERCICE 7B.6

On considère les 5 points A, B, C, D et E, qui permettent de définir les vecteurs suivants :

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \qquad \overrightarrow{AD} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\overrightarrow{AE} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \qquad \overrightarrow{BC} \begin{pmatrix} 5 \\ -1 \end{pmatrix} \qquad \overrightarrow{BD} \begin{pmatrix} -1 \\ -4 \end{pmatrix} \qquad \overrightarrow{BE} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$\overrightarrow{CD} \begin{pmatrix} -6 \\ -3 \end{pmatrix} \qquad \overrightarrow{CE} \begin{pmatrix} -1 \\ 3 \end{pmatrix} \qquad \overrightarrow{DE} \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

a. \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires donc les points A, B et C ne sont pas alignés

b.
$$\overrightarrow{AE} = -\overrightarrow{CD}$$
 donc (AE) // (CD)

c. \overrightarrow{AC} et \overrightarrow{AD} ne sont pas colinéaires donc les points A, C et D ne sont pas alignés

$$\overrightarrow{AD} = \overrightarrow{CE}$$
 donc (AD) // (CE)

e. $\overrightarrow{AE} = 3 \overrightarrow{AB}$ donc (AE) // (AB) : ces deux droites ont un point commun : A, B et E sont alignés

f. \overrightarrow{BE} et \overrightarrow{AC} ne sont pas colinéaires donc les droites (BE) et (AC) ne sont pas parallèles

EXERCICE 7B.7

a. Les points A(3; 2), B(7; 3) et C(15; 5) sont-ils alignés?

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ et \overrightarrow{AC} $\begin{pmatrix} 12 \\ 3 \end{pmatrix}$ ainsi $\overrightarrow{AC} = 3\overrightarrow{AB}$

donc (AC) // (AB) : ces deux droites ont un point commun : A, B et C sont alignés

b. Les points D(-31 ; 12), E(-10 ; -3) et F(18 ; -22) sont-ils alignés ?

$$\overrightarrow{DE} \begin{pmatrix} 21 \\ -15 \end{pmatrix} \text{ et } \overrightarrow{EF} \begin{pmatrix} 28 \\ -19 \end{pmatrix}$$
$$21 \times (-19) - (-15) \times 28 = -399 + 420 = 21$$

donc \overrightarrow{DE} et \overrightarrow{EF} ne sont pas colinéaires : D, E et F ne sont pas alignés

EXERCICE 7B.8 On donne les quatre points :

$$\begin{array}{cccc}
I(6;1) & J(-6;-3) & K(-12;-5) & L(7;-1) \\
\overrightarrow{IJ} \begin{pmatrix} -12 \\ -4 \end{pmatrix}, & \overrightarrow{IK} \begin{pmatrix} -18 \\ -6 \end{pmatrix}, & \overrightarrow{IL} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

 \overrightarrow{IJ} et \overrightarrow{IL} ne sont pas colinéaires donc ces points ne sont pas alignés

EXERCICE 7B.9

On considère le triangle ABC tel que :

$$A(-1; 2)$$
 $B(-3; -2)$ $C(5; 4)$ I et J sont les milieux respectifs de [AB] et [AC].

a. I
$$\begin{pmatrix} \frac{x_{\mathrm{A}} + x_{\mathrm{B}}}{2} \\ \frac{y_{\mathrm{A}} + y_{\mathrm{B}}}{2} \end{pmatrix}$$
 soit I $\begin{pmatrix} \frac{-1 + (-3)}{2} \\ \frac{2 + (-2)}{2} \end{pmatrix}$ soit I $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$

De même
$$J\binom{2}{3}$$

Ainsi
$$\overrightarrow{IJ} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{BC} \begin{pmatrix} 8 \\ 6 \end{pmatrix}$

 $\overrightarrow{BC} = 2 \overrightarrow{IJ}$ donc ces vecteurs sont colinéaires et les droites (IJ) et (BC) sont parallèles.

b. Ce résultat était prévisible : on retrouve le théorème des milieux (introduction au théorème de Thalès)

EXERCICE 7B10

On considère le triangle ABC tel que :

Soit M le point tel que $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}$.

Soit N le point tel que $\overrightarrow{AN} = \frac{1}{3} \overrightarrow{AC}$.

Démontrer que les droites (MN) et (BC) sont parallèles.

PREMIERE METHODE:

Soit
$$M\begin{pmatrix} x \\ y \end{pmatrix}$$
 le point tel que $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}$.

Soit
$$N\begin{pmatrix} x' \\ y' \end{pmatrix}$$
 le point tel que $\overrightarrow{AN} = \frac{1}{3} \overrightarrow{AC}$.

$$\overrightarrow{AB} \begin{pmatrix} 6 \\ 3 \end{pmatrix}, \overrightarrow{AC} \begin{pmatrix} 12 \\ -3 \end{pmatrix}, \overrightarrow{AM} \begin{pmatrix} x+3 \\ y-4 \end{pmatrix}, \overrightarrow{AN} \begin{pmatrix} x'+3 \\ y'-4 \end{pmatrix}$$

$$\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} \Leftrightarrow \begin{cases} x+3=\frac{1}{3} \times 6 \\ y-4=\frac{1}{3} \times 3 \end{cases} \Leftrightarrow \begin{cases} x=-1 \\ y=5 \end{cases} : M \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

$$\overrightarrow{AN} = \frac{1}{3} \overrightarrow{AC} \Leftrightarrow \begin{cases} x' + 3 = \frac{1}{3} \times 12 \\ y' - 4 = \frac{1}{3} \times (-3) \end{cases} \Leftrightarrow \begin{cases} x' = 1 \\ y' = 3 \end{cases} \text{ soit N } \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\overrightarrow{BC} \begin{pmatrix} 6 \\ -6 \end{pmatrix}$$
 et $\overrightarrow{MN} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$

Ainsi $\overrightarrow{BC} = 3 \overrightarrow{MN}$

Donc ces vecteurs sont colinéaires et les droites (MN) et (BC) sont parallèles.

DEUXIEME METHODE:

Il faut comparer les vecteurs \overrightarrow{BC} et \overrightarrow{MN} .

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = \frac{1}{3} \overrightarrow{BA} + \frac{1}{3} \overrightarrow{AC}$$

$$= \frac{1}{3} (\overrightarrow{BA} + \overrightarrow{AC}) = \frac{1}{3} \overrightarrow{BC}$$

Donc ces vecteurs sont colinéaires et les droites (MN) et (BC) sont parallèles.

TROISIEME METHODE:

Il faut comparer les vecteurs \overrightarrow{BC} et \overrightarrow{MN} .

On sait que
$$\overrightarrow{AB} \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$
 , $\overrightarrow{AC} \begin{pmatrix} 12 \\ -3 \end{pmatrix}$, $\overrightarrow{BC} \begin{pmatrix} 6 \\ -6 \end{pmatrix}$

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = \frac{1}{3}\overrightarrow{BA} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} \text{ donc } \overrightarrow{AM} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ et } \overrightarrow{MA} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$\overrightarrow{AN} = \frac{1}{3} \overrightarrow{AC} \text{ donc } \overrightarrow{AN} \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

Ainsi :
$$\overrightarrow{MN} \begin{pmatrix} -2+4 \\ -1-1 \end{pmatrix}$$
 soit $\overrightarrow{MN} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$

 $\overrightarrow{MN} = \frac{1}{3} \overrightarrow{BC}$ donc ces vecteurs sont colinéaires et les droites (MN) et (BC) sont parallèles.