La fonction carrée et la fonction inverse

Fonction carrée

EXERCICE 1

f est la fonction carrée. Calculer les images par f des nombres suivants :

a) 4

b) 100

c) 0

d) $-\frac{3}{4}$

e) 0,1

EXERCICE 2

f est la fonction carrée et $\mathscr P$ sa parabole représentative. Expliquer graphiquement puis algébriquement pourquoi :

- a) il existe deux réels qui ont 4 comme image par f.
- b) il n'existe pas d'image pour -1

EXERCICE 3

f est la fonction carrée. Déterminer les antécédents par f, lorsque cela est possible, de chacun des réels suivants :

a) 1

b) -4

c) 0

d) $\frac{5}{4}$

e) 100

EXERCICE 4

Afficher à l'écran de la calculatrice la courbe de la fonction carrée sur l'intervalle *I* suivant en précisant la fenêtre utilisée :

a) I = [-0, 3; 0, 3]

b) I = [100; 1000]

EXERCICE 5

Citer la propriété de la fonction carrée qui permet d'affirmer sans calcul que :

a) $5,15 \le 5,825$ donc $5,15^2 \le 5,825^2$

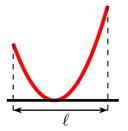
b) $-3.52 \le -3.07$ donc $(-3.52)^2 \ge (-3.07)^2$

EXERCICE 6

Soit f la fonction carrée. Si $x \in [1;3]$ à quel intervalle appartient f(x). On pourra s'aider d'un tableau de variation.

La schématisation d'une sculpture construite à l'aide de la fonction carrée est haute de 5 m d'un côté et de 3 m de l'autre.

Calculer la valeur approchée au cm près de sa largeur ℓ .



EXERCICE 8

Construction d'une parabole

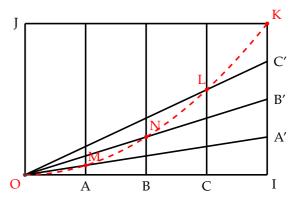
Voici un procédé utilisé par les tailleurs de pierres pour tracer une parabole sur un bloc rectangulaire.

Les points A, B, C du segment [OI] sont tels que :

$$OA = AB = BC = CI$$

Les points A', B', C' du segment [IK] sont tels que :

$$IA' = A'B' = B'C' = C'K$$



Justifier que les points O, M, N, L et K appartiennent à la courbe de la fonction carrée. (On pourra utiliser le théorème de Thalès)

Fonction trinôme

EXERCICE 9

Déterminer la forme canonique puis les variations des fonctions trinômes f suivantes :

1)
$$f(x) = x^2 - 4x + 1$$

4)
$$f(x) = 2x^2 - 6x + 4$$

2)
$$f(x) = x^2 + x - 6$$

$$5) \ f(x) = 3x^2 + 12x + 12$$

3)
$$f(x) = x^2 + 6x + 12$$

6)
$$f(x) = -x^2 + 7x - 10$$

EXERCICE 10

Soit l'algorithme suivant :

Choisir un nombre. Lui ajouter 3. Élever le résultat au carré. Multiplier le résultat par -2. Soustraire au résultat 4. Afficher le résultat

- 1) Traduire cet algorithme à l'aide d'une fonction où le nombre de départ est *x*
- 2) Proposer un programme sur votre calculatrice.
- 3) Comment traduire la fonction $f(x) = 2(x-5)^2 + 6$ à l'aide d'un algorithme ayant la même structure que celui ci-dessus.

f est la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 - 3$.

- 1) Dresser le tableau de variation de f sur l'intervalle [-2;2].
- 2) Afficher à l'écran de votre calculatrice la fonction f sur l'intervalle [-2;2]. Conjecturer un élément de symétrie de cette courbe.
- 3) Démontrer cette conjecture.

EXERCICE 12

Dans chaque cas, dresser le tableau de variation des fonctions trinôme suivantes :

1)
$$f_1(x) = 3(x-1)^2 - 4$$

3)
$$f_3(x) = -2x^2 + 7$$

2)
$$f_2(x) = 4 - 3(x - 1)^2$$

4)
$$f_4(x) = -5 + 3x^2$$

EXERCICE 13

f est la fonction définie sur \mathbb{R} par : $f(x) = 2(x-3)^2 + 4$

- 1) Dresser le tableau de variation de *f*
- 2) Sans calcul, comparer, si possible :

a)
$$f(-1)$$
 et $f(2)$ b) $f(1)$ et $f(4)$

b)
$$f(1)$$
 et $f(4)$

c)
$$f(20)$$
 et $f(19.7)$

3) *a* désigne un réel de l'intervalle $]-\infty;3]$. Comparer f(a) et f(a-1).

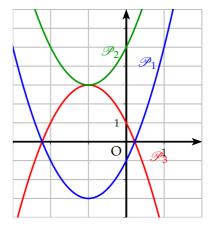
EXERCICE 14

Sans utiliser la calculatrice, associer à chacune des fonctions suivantes la représentation graphique qui lui correspond, en justifiant votre réponse.

$$f(x) = -2(x+1)^2 + 3$$

$$g(x) = 2(x+1)^2 - 3$$

$$h(x) = 2(x+1)^2 + 3$$



EXERCICE 15

Dans chaque cas, dire si la parabole, représentant la fonction *f* , est tournée « vers le haut » ou « vers le bas ». Donner les coordonnées du sommet et tracer sur votre calculatrice la parabole en adaptant la fenêtre afin d'obtenir une représentation satisfaisante.

a)
$$f_1(x) = -(x+2)^2 - 3$$

c)
$$f_3(x) = -4(x-3,5)^2 + 1,5$$

b)
$$f_2(x) = \frac{25}{2} + 2\left(x - \frac{1}{2}\right)^2$$

d)
$$f_4(x) = 7 + x^2$$

Déterminer un trinôme

f est un polynôme du second degré. ${\mathscr P}$ est la parabole représentant f dans un repère orthogonal.

Dans chacun des cas suivants, traiter les informations pour retrouver l'expression de f(x).

- a) \mathscr{P} a pour sommet S(2;3). Le point A(0; -1) appartient à \mathscr{P} .
- b) \mathscr{P} coupe l'axe des abscisses aux points A(-2;0) et B(1;0), et l'axe des ordonnées au point C(0;2).
- c) \mathscr{P} admet pour axe de symétrie la droite parallèle à l'axe des ordonnées passant par le point A(1;0). \mathscr{P} coupe l'axe des abscisses en l'origine O du repère et passe par le point B(3;1).

EXERCICE 17

Résistance

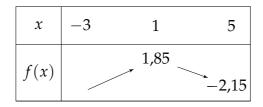
Sur une Peugeot 406 1,6i, les variations de la résistance R (en Ω) de la sonde de «température d'eau» en fonction de la température T (en °C) du liquide dans le circuit de refroidissement sont données par :

$$R = 0.58T^2 - 116T + 6000$$
 (avec $0 \le T \le 150$).

- a) Vérifier que $R = 0.58(T 100)^2 + 200$.
- b) Quel est le minimum de cette résistance? A quelle température est-il atteint?

EXERCICE 18

f est une fonction trinôme. On donne le tableau de variation suivant :



- a) Que vaut f(-3)? Justifier
- b) Donner l'expression de f(x).

EXERCICE 19

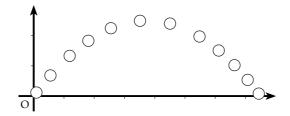
Balle de ping-pong

L'objectif de cet exercice est de trouver l'expression de la fonction f associée à la trajectoire de la balle de ping-pong.

- a) Partie de l'origine du repère, la balle arriverait 150 cm plus loin sans filet.
 - Elle s'est élevée de 50 cm de haut.

Traiter ces informations pour déterminer f(x) sachant que f est une fonction polynôme de degré 2.

b) Sachant que le filet se trouve à 120 cm de l'origine et que sa hauteur est 15,25 cm, la balle est-elle passée au-dessus du filet?



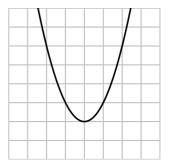
EXERCICE 20

Placer les axes

Marie a représenté ci-contre la fonction définie sur \mathbb{R} par :

$$f(x) = x^2 - 2x + 1$$

Marie a oublié de dessiner les axes du repère. Seriez vous capable de les replacer sur la figure?



EXERCICE 21

Définition d'une parabole

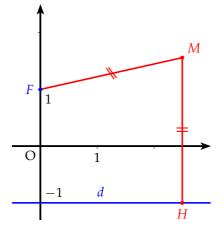
En géométrie, on appelle parabole une courbe constituée des point M équidistants d'un point F appelé foyer et d'une droite fixe.

On donne le foyer de la parabole F(0;1) et la droite d fixe d'équation y=-1. H est le projeté orthogonal de M sur la droite d. On obtient alors la figure cicontre :

Comme les point M sont équidistants de F et de la droite d, on peut écrire :

$$MF = MH$$

- a) Pourquoi *M* est sur la médiatrice de [FH]?
- b) Si *H* est un point de *d*, indiquer une construction du point *M* associé à *H*.



Fonction inverse

EXERCICE 22

f est la fonction inverse. Calculer les images par f des réels suivants :

a) $\frac{5}{7}$ b) $-\frac{1}{9}$ c) $-\frac{3}{4}$ d) $\frac{5}{8}$

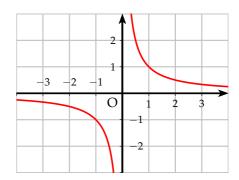
e) 10^{-6}

f) 10^5

EXERCICE 23

Voici la courbe représentative de la fonction inverse, dans un repère. Expliquer graphiquement

- a) Pourquoi il n'existe qu'un seul réel dont l'inverse est 2. Quel est ce réel?
- b) Pourquoi il n'existe qu'un réel dont l'inverse est -3. Quel est ce réel?
- c) Pourquoi il n'existe pas de réel dont l'inverse est 0?



EXERCICE 24

f est la fonction inverse. Déterminer les antécédents par f de :

a)
$$\frac{4}{3}$$

b) 0,02

c) 10^{-5}

d) 2×10^4

Que fait-on comme fonction pour trouver ces antécédents?

EXERCICE 25

Afficher sur l'écran de votre calculatrice, la courbe de la fonction inverse sur l'intervalle *I* indiqué, en précisant la fenêtre utilisée.

a)
$$I = [-1; -0, 1]$$

b)
$$I = [10, 100]$$

EXERCICE 26

Citer la propriété de la fonction inverse qui permet d'affirmer sans calcul que :

a)
$$3,14 \le 3,151$$
 donc $\frac{1}{3,14} \ge \frac{1}{3,151}$

b)
$$-0.2 \le -0.152$$
 donc $-\frac{1}{0.2} \ge -\frac{1}{0.152}$

EXERCICE 27

Résoudre les inéquations suivantes en s'aidant de la courbe de la fonction inverse

a)
$$\frac{1}{x} \leqslant \frac{3}{4}$$

b)
$$\frac{1}{x} \le -3$$

c)
$$\frac{1}{x} > -2$$

EXERCICE 28

À l'intérieur d'un piston, la pression P en bars, et le volume V en litres, suivent la loi $P \times V = 1$.

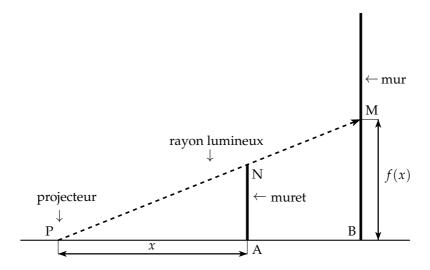
a) Expliquer pourquoi cette loi est liée à la fonction inverse.

b) Sachant qu'à l'intérieur du piston, le volume peut varier entre 0,5 et 5 litres, quelles sont les valeurs possibles pour la pression?

EXERCICE 29

Un petit muret

Un petit muret AN de 2 mètres de hauteur est situé à 3 mètres d'un mur BM. Au sol un projecteur mobile est dirigé sur ce muret et le mur derrière ; l'ombre du muret arrive en M sur le mur.



- 1) Montrer, en utilisant le théorème de Thalès, que $BM = 2 + \frac{6}{AP}$
- 2) Soit la fonction f définie sur $]0; +\infty[$ par $: f(x) = 2 + \frac{6}{x}.$
 - a) Déterminer les variations de f sur $]0; +\infty[$ puis dresser son tableau de variation.
 - b) Recopier puis compléter le tableau de valeurs suivant :

x	0,5	1	2	3	6	15
f(x)						

- c) Représenter la fonction *f* pour les valeurs de *x* situées dans l'intervalle [0;15]. On prendra comme unité le cm sur les deux axes.
- 3) On cherche où situer le projecteur afin qu'une marque située à 3,5 m de hauteur sur le mur ne soit jamais éclairée. Quelles sont les valeurs de *x* possibles?

EXERCICE 30

Fonctions homographiques et hyperboles

Les courbes ci-dessous sont les représentations graphiques des fonctions f_1 , f_2 , f_3 et f_4 définies par :

•
$$f_1(x) = 2 + \frac{1}{x}$$

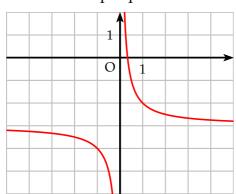
•
$$f_2(x) = 2 - \frac{1}{x}$$

•
$$f_3(x) = -3 + \frac{1}{x}$$

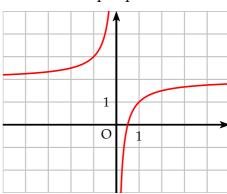
$$\bullet \ f_4(x) = -3 - \frac{1}{x}$$

Associer chaque fonction à son graphique en justifiant sa réponse.

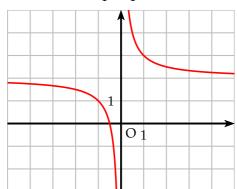
Graphique A



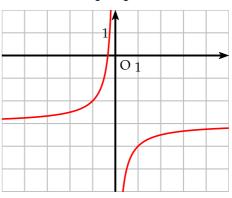
Graphique C



Graphique B



Graphique D



Algorithme

EXERCICE 31

Donner l'écriture de la fonction correspondante aux opérations suivantes

- 1) On prend l'inverse de la somme de *x* et de 2.
- 2) On ajoute 3 à l'inverse de x.
- 3) On ajoute 1 à l'inverse de la différence de *x* et de 5.

EXERCICE 32

Déterminer la fonction f associée aux programmes suivants :

Variables X, Y réelsInitialisation

Lire XTraitement $X - 3 \rightarrow Y$ $4Y \rightarrow Y$ $\frac{1}{Y} \rightarrow Y$ Sortie

Afficher Y

Variables
$$X, Y \text{ réels}$$

Initialisation

Lire X

Traitement
 $\overline{5X \to Y}$
 $\overline{\frac{1}{Y} \to Y}$
 $Y + 5 \to Y$

Sortie

Afficher Y

Pour chaque fonction donnée ci-dessous, donner un programme similaire aux programme de l'exercice précédent.

$$f(x) = \frac{8}{x+3}$$

$$g(x) = 3 + \frac{1}{7x + 1}$$

EXERCICE 34

x est un nombre de l'intervalle [-3; -1]

1) Compléter les programmes de calculs suivants en précisant à chaque étapes l'opération qui est faite.

$$x \xrightarrow[\text{on multiplie par 2}]{1} \xrightarrow[\text{on multiplie par 3}]{1} \cdots \xrightarrow[\text{on prend l'inverse}]{1} \xrightarrow[\text{on prend l'inverse}]{1} \xrightarrow[\text{on prend l'inverse}]{1} \cdots$$

2) Utiliser ces programmes de calcul pour donner un encadrement des nombre :

$$A = 5 + \frac{3}{x}$$

$$B = \frac{1}{2x+1}$$

EXERCICE 35

x est un nombre de l'intervalle [5; 10]

Procéder comme l'exercice précédent pour donner un encadrement des nombres :

$$M = \frac{5}{x - 3}$$

$$N=2-\frac{7}{x}$$

EXERCICE 36

Campagne de publicité

Partie A

Un entreprise souhaite promouvoir une nouvelle sorte de céréales pour le petitdéjeuner. L'entreprise estime qu'après *x* semaines de publicité, le pourcentage de personnes connaissant le nom de ces céréales est donné par :

$$p(x) = \frac{80x}{x+1}$$

- 1) Calculer p(4). En déduire le pourcentage de personnes ignorant le nom du produit après quatre semaines de publicité.
- 2) L'écriture de p(x) est-elle compatible avec les affirmations suivantes :
 - a) Avant la campagne de publicité, personne ne connaissait le nom de ces céréales.
 - b) Après 15 semaines de publicité, tout le monde connaît le nom de ces céréales.

Partie B

L'entreprise envisage une campagne de publicité de 10 semaines pour promouvoir ce produit.

On s'intéresse donc à la fonction p définie sur l'intervalle [0;10] par :

$$p(x) = \frac{80x}{x+1}$$

Tracer la fonction p sur votre calculette. Vous prendrez comme fenêtre graphique :

$$0 \leqslant X \leqslant 10$$
 et $0 \leqslant Y \leqslant 90$ unité graphique : 1 pour X et 10 pour Y

Utiliser votre calculatrice pour répondre aux questions suivantes :

- 1) Déterminer graphiquement la durée nécessaire pour que le pourcentage p(x) devienne supérieur ou égal à 60%.
- 2) Déterminer graphiquement combien de semaines supplémentaires de publicité sont nécessaires pour que ce pourcentage dépasse 70%.
- 3) Le directeur de marketing de cette entreprise affirme que la campagne de publicité aura un fort impact pendant les trois premières semaines, et qu'au-delà, ce sera beaucoup plus limité.

Au vu du graphique, cette affirmation vous semble-t-elle justifiée?

EXERCICE 37

Algorithme de Kuwarizmi

On donne l'algorithme suivant en pseudo-code

Variables	
A, B, Q, X	
Initialisation	
Lire A , B	
Traitement	
$\frac{A}{2} o Q$	
2 ~~	
$Q^2 o X$	valeur X_1
$X + B \rightarrow X$	valeur X ₂
$\sqrt{X} \to X$	valeur X ₃
$X - Q \rightarrow X$	valeur X_4
Sortie	
Afficher X	

1) Remplir le tableau suivant :

A	В	Q	X_1	X_2	X_3	X_4	Résultat
10	96						
8	2 009						

- 2) Rentrer cet algorithme dans votre calculette et retrouver les résultats du tableau.
- 3) Résoudre en utilisant la forme canonique les équations suivantes :

a)
$$x^2 + 10x = 96$$

b)
$$x^2 + 8x = 2009$$

- c) Expliquer ce que calcule cet algorithme
- d) Trouver alors, à l'aide du programme de votre calculatrice, la solution positive de l'équation : $x^2 84x = 3565$