Corrigé de l'exercice 1

- ▶1. Convertir les cinq mesures suivantes en radians : 222°, 124°, 286°, 24° et 99°. La conversion est en fait une simple règle de proportionnalité : il faut multiplier par $\frac{\pi}{180}$. Par exemple pour la première mesure, on obtient avec simplification : $222 \times \frac{\pi}{180} = \frac{37\pi}{30}$ rad. De même pour les autres mesures, on trouve alors respectivement : $\frac{37\pi}{30}$ rad, $\frac{31\pi}{45}$ rad, $\frac{143\pi}{90}$ rad, $\frac{2\pi}{15}$ rad et $\frac{11\pi}{20}$ rad.
- ▶2. Convertir les cinq mesures suivantes en degrés : $\frac{59\pi}{30}$, $\frac{6\pi}{4}$, $\frac{103\pi}{90}$, $\frac{2\pi}{3}$ et $\frac{7\pi}{12}$ rad. On effectue alors la proportionnalité inverse : il faut multiplier par $\frac{180}{\pi}$. Après simplification, voici les résultats : 354° , 270° , 206° , 120° et 105° .
- ▶3. Déterminer les mesures principales des angles suivants en radians : $\frac{11\pi}{9}$, π , $\frac{99\pi}{10}$, $\frac{31\pi}{17}$ et $\frac{-81\pi}{23}$ rad. Une mesure d'angle en radians est définie modulo 2π , c'est-à-dire que l'ajout ou la suppression d'un tour (qui vaut 2π ou 360°) ne change pas un angle.

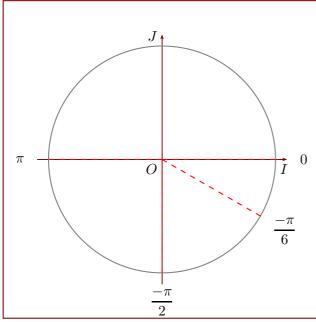
Concrètement, avec le premier angle de la question, on remarque que :

$$\frac{11\pi}{9} \equiv \frac{-7\pi}{9} + \frac{18\pi}{9} \equiv \frac{-7\pi}{9} + 2\pi \equiv \frac{-7\pi}{9} \ (2\pi).$$

De même pour les autres mesures, on trouve alors respectivement : $\frac{-7\pi}{9}$ rad, π rad, $\frac{-\pi}{10}$ rad, $\frac{-3\pi}{17}$ rad et $\frac{11\pi}{23}$ rad.

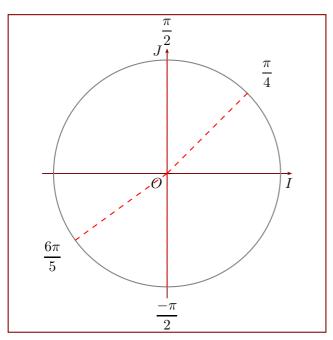
▶4. Des angles ont été placés sur le cercle trigonométrique ci-dessous, représentés en rouge par les points M_0, M_1, M_2 et M_3 . Lire leurs mesures principales en radians (les lignes vertes, grises et bleues représentent des angles multiples de $\frac{\pi}{3}$, de $\frac{\pi}{4}$ et de $\frac{\pi}{5}$).

Les réponses sont directement données sur le cercle trigonométrique ci-dessous :



Les points M_0 , M_1 , M_2 et M_3 définissent alors respectivement les angles π , 0, $\frac{-\pi}{6}$ et $\frac{-\pi}{2}$ rad.

▶5. Placer les angles suivants sur le cercle trigonométrique : $\frac{\pi}{4}$, $\frac{2\pi}{4}$, $\frac{-\pi}{2}$ et $\frac{6\pi}{5}$ rad. Les réponses sont directement données sur le cercle trigonométrique ci-dessous :



Ajoutons une simple remarque pour la dernière mesure, qui n'est pas principale : il faut effectuer en premier lieu une simplification, comme à la question 3. On obtient alors :

$$\frac{6\pi}{5} \equiv \frac{-4\pi}{5} \ (2\pi).$$

Corrigé de l'exercice 2

▶1. Convertir les cinq mesures suivantes en radians : 78°, 11°, 192°, 321° et 99°.

La conversion est en fait une simple règle de proportionnalité : il faut multiplier par $\frac{\pi}{180}$.

Par exemple pour la première mesure, on obtient avec simplification : $78 \times \frac{\pi}{180} = \frac{13\pi}{30}$ rad.

De même pour les autres mesures, on trouve alors respectivement : $\frac{13\pi}{30}$ rad, $\frac{11\pi}{180}$ rad, $\frac{16\pi}{15}$ rad, $\frac{107\pi}{15}$ rad, $\frac{107\pi}{60}$ rad et $\frac{11\pi}{20}$ rad.

▶2. Convertir les cinq mesures suivantes en degrés : $\frac{7\pi}{60}$, π , $\frac{26\pi}{15}$, $\frac{6\pi}{9}$ et $\frac{37\pi}{20}$ rad.

On effectue alors la proportionnalité inverse : il faut multiplier par $\frac{180}{\pi}$.

Après simplification, voici les résultats : 21°, 180°, 312°, 120° et 333°.

▶3. Déterminer les mesures principales des angles suivants en radians : $\frac{92\pi}{5}$, $\frac{20\pi}{14}$, $\frac{73\pi}{4}$, $\frac{9\pi}{5}$ et $\frac{-83\pi}{8}$ rad. Une mesure d'angle en radians est définie modulo 2π , c'est-à-dire que l'ajout ou la suppression d'un tour (qui vaut 2π ou 360°) ne change pas un angle.

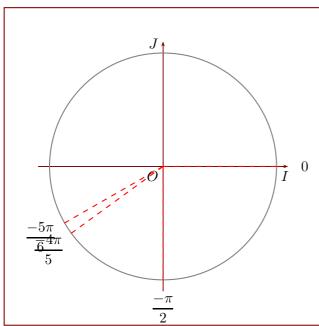
Concrètement, avec le premier angle de la question, on remarque que :

$$\frac{92\pi}{5} \equiv \frac{2\pi}{5} + \frac{90\pi}{5} \equiv \frac{2\pi}{5} + 18\pi \equiv \frac{2\pi}{5} \ (2\pi).$$

De même pour les autres mesures, on trouve alors respectivement : $\frac{2\pi}{5}$ rad, $\frac{-4\pi}{7}$ rad, $\frac{\pi}{4}$ rad, $\frac{-\pi}{5}$ rad et $\frac{-3\pi}{8}$ rad.

▶4. Des angles ont été placés sur le cercle trigonométrique ci-dessous, représentés en rouge par les points M_0 , M_1 , M_2 et M_3 . Lire leurs mesures principales en radians (les lignes vertes, grises et bleues représentent des angles multiples de $\frac{\pi}{3}$, de $\frac{\pi}{4}$ et de $\frac{\pi}{5}$).

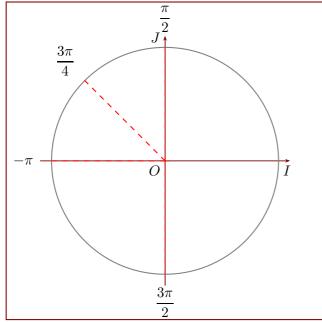
Les réponses sont directement données sur le cercle trigonométrique ci-dessous :



Les points M_0 , M_1 , M_2 et M_3 définissent alors respectivement les angles 0, $\frac{-\pi}{2}$, $\frac{-4\pi}{5}$ et $\frac{-5\pi}{6}$ rad.

▶5. Placer les angles suivants sur le cercle trigonométrique : $\frac{3\pi}{4}$, $\frac{3\pi}{6}$, $-\pi$ et $\frac{3\pi}{2}$ rad.

Les réponses sont directement données sur le cercle trigonométrique ci-dessous :



Ajoutons une simple remarque pour la dernière mesure, qui n'est pas principale : il faut effectuer en premier lieu une simplification, comme à la question 3. On obtient alors :

$$\frac{3\pi}{2} \equiv \frac{-\pi}{2} \ (2\pi).$$