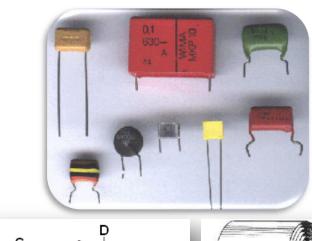
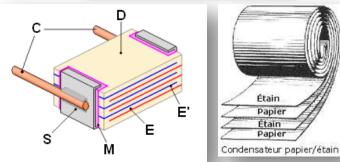

ثنائي القطب RC

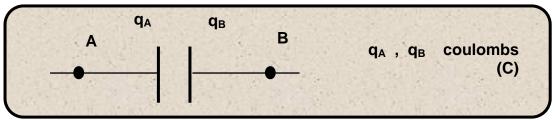



فرق الجهد بين سحابة و سطح الأرض يمكن أن يصل إلى V 10⁹ V مباشرة قبل حدوث البرق: الطاقة المختزنة في هذه المجموعة الطبيعية تستعاد خلال البرق. مركبة كهربائية ، تسمى المكثف ، تختزن الطاقة بنفس الشكل

(les condensateurs) : المكثفات (1

عازل استقطابي من السيراميك : D : (الكترودين) لبوسي المكثف : E E' : М : فلز يربط بين الإلكترودات : S : دربط المرابط : C

المكثف مركبة كهربائية تستعمل في عدة اجهزة: مولدات التوتر، منظم ضربات القلب، وماض آلة التصوير، حاسوب،


Page 1 الأستاذ : عزيز العطور

1 - 1) وصف ، رمز و شحنة اللبوسين .

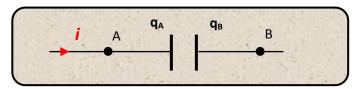
يتكون المكثف من موصلين في مواجهة بعضهما البعض و يسميان باللبوسين يوجد بين هذين اللبوسين عازل الاستقطابي . نمثل رمزيا مكثف بلبوسيه.

نربط مكثفا بعمود : عندما يصل إلكترون إلى لبوس ، يكون إلكترون آخر قد غادر اللبوس الثاني ، مما يدل على أن اللبوسين مشحونين و يوجد بينهما فرق في الجهد . يمكن إذن أن يوجد تيار كهربائي في الدارة ، رغم توفرها على عازل .

هذه الظاهرة مرحلة انتقالية فقط وليست دائمة: عند توقف انتقال الإلكترونات، شدة التيار تنعدم، و اللبوسين يحافظان على شحنة

الشحن المحمولة من طرف اللبوسين دائما متساوية و لها إشارتين مختلفتين . إجمالا المكثف محايد كهربائيا رغم وجود توتر بين لبوسيه.

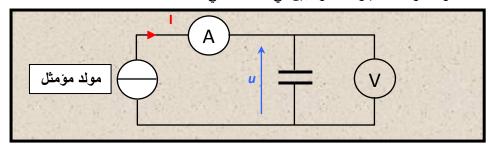
1 ـ 2) العلاقة شحنة ـ شدة تيار


تمثل شدة التيار الكهربائي صبيب الشحنات الكهربائية في الدارة . خلال مدة زمنية معينة $\Delta t = t - t_0$ تتراكم على اللبوس A الشحنة

$$\mathbf{I}_{\mathrm{m}} = rac{\Delta \mathbf{q}_{\mathrm{A}}}{\Delta t}$$
 : الشدة المتوسطة للتيار الكهربائي هي . $\Delta \mathbf{q}_{\mathrm{A}} = \mathbf{q}_{\mathrm{A}}(t) - \mathbf{q}_{\mathrm{A}}(t_{\mathrm{0}})$

$$\mathbf{i}(\mathbf{t}_{_{0}}) = \lim_{\mathbf{t} \to \mathbf{t}_{_{0}}} \frac{\mathbf{q}_{_{A}}(\mathbf{t}) - \mathbf{q}_{_{A}}(\mathbf{t}_{_{0}})}{\mathbf{t} - \mathbf{t}_{_{0}}}$$
 : $\mathbf{t}_{_{0}}$: $\mathbf{t}_{_{0}}$: $\mathbf{t}_{_{0}}$

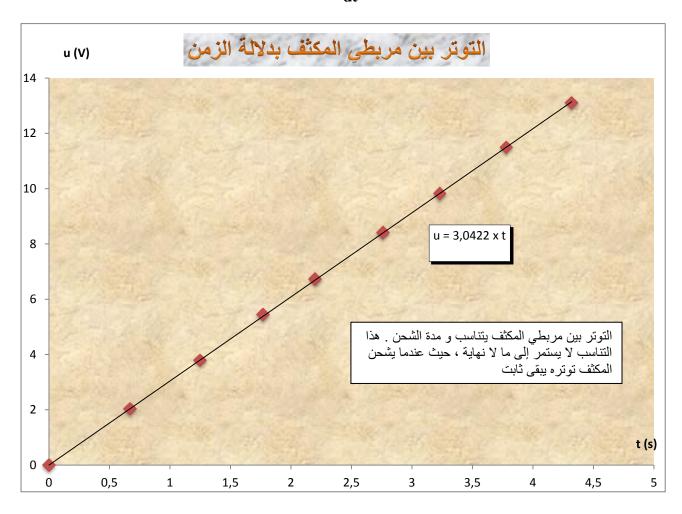
$$\mathbf{i}(t) = rac{\mathbf{dq_A}}{\mathbf{dt}}$$
 : عند لحظة \mathbf{t} معينة (كاللحظة \mathbf{t} و باعتماد تعريف المشتقة :


في حالة المكثف ، يعبر عن شدة التيار بالمشتقة بالنسبة للزمن للشحنة اللبوس A ، و باتخاذ الاصطلاح مستقبل التالي :

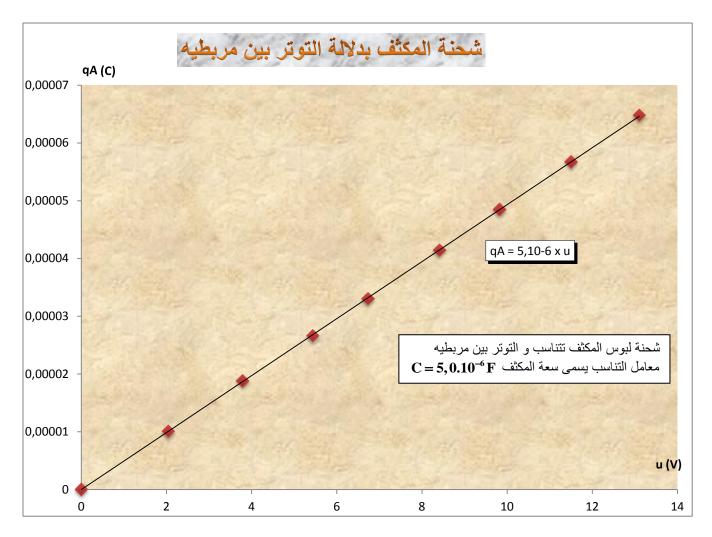
1 - 3) العلاقة شحنة - توتر .

يمكن أن نبر هن تجريبيا أنه عند كل لحظة ، النسبة $\frac{\mathbf{q}_{A}(t)}{\mathbf{u}_{AB}(t)}$ تبقى ثابتة كيفما كانت شدة التيار المار في الدارة ، و في حدود التوتر القصوي الذي يتحمله المكثف . مع ${f q}_{_{
m A}}(t)$ شحنة اللبوس ${f A}$ و ${f u}_{_{
m AB}}(t)$ التوتر الموجود بين مربطي المكثف .

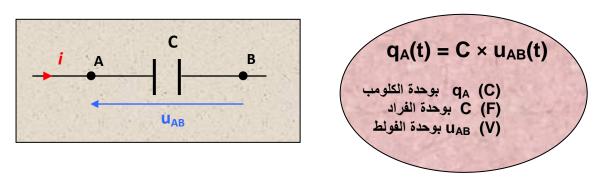
الأستاذ: عزيز العطور Page 2 لإنجاز التجربة نستعمل مولدا مؤمثلا للتيار كما هو مبين في الشكل التالي:



. $I=15\mu A$ يحمل الإشارة $C=5,00.10^{-6}\,F$. شدة التيار ثابتة و تساوي $I=15\mu A$. النتائج المحصل عليها مدونة في الجدول التالي :

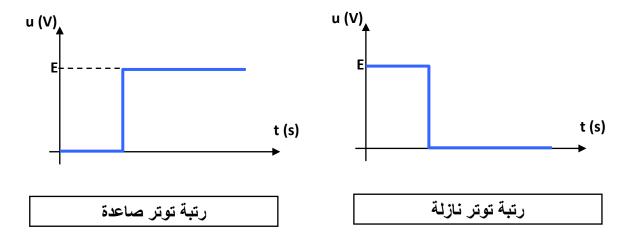

t (s)	0	0,67	1,25	1,77	2,20	2,76	3,23	3,78	4,32
u (V)	0	2,04	3,79	5,44	6,73	8,41	9,82	11,5	13,1
q _A (10 ⁻⁶ C)	0	10,1	18,8	26,6	33,0	41,4	48,5	56,7	64,8

 $\mathbf{q}_{\mathrm{A}} = \mathbf{I}.\mathbf{t}$: ما أن شدة التيار ثابتة ، شحنة اللبوس A تحقق في كل لحظة العلاقة

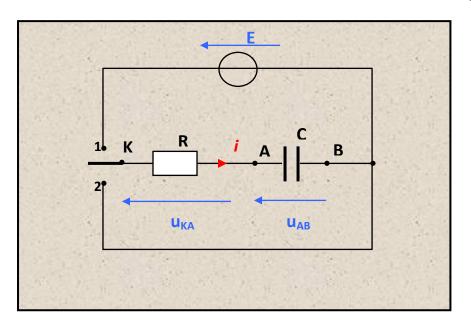

$$i(t) = \frac{dq_A}{dt} = I \implies q_A(t) = I \times t$$

Page 3 الأستاذ : عزيز العطور

الشحنة $q_A(t)$ لمكثف تتناسب و التوتر بين مربطيه $u_{AB}(t)$. معامل التناسب ، يرمز له ب $Q_A(t)$ ، و يسمى سعة المكثف و يعبر عنه بوحدة الفراد farads (F) . و هو مقدار دائما موجب . الفراد وحدة الفراد $q_A(t)$ أو الميكرو فراد $q_A(t)$. $q_A(t)$. الفراد وحدة كبيرة لدى تستعمل عادة أجزاء الفراد مثل : الميلى فراد $q_A(t)$ أو الميكرو فراد $q_A(t)$.

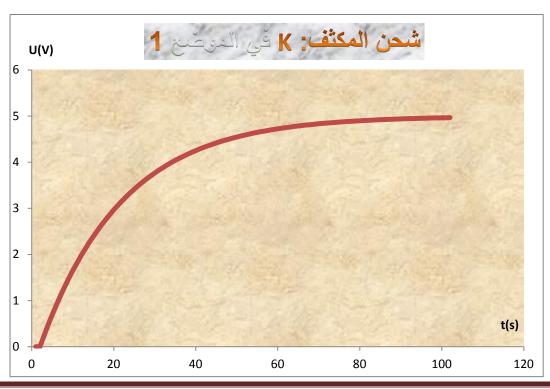

* ملحوظة: العلاقة أعلاه صحيحة فقط باعتماد الاصطلاح مستقبل بالنسبة للمكثف.

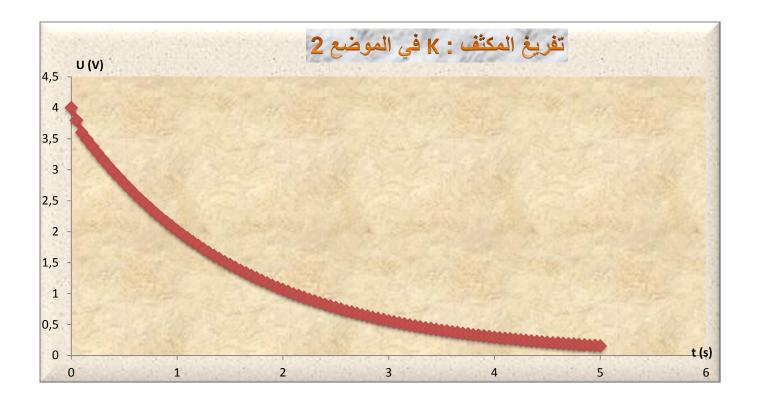
2) ثنائي القطب RC على التوالي.


2 - 1) النتائج التجريبية .

ندرس أستجابة ثنائي القطب RC على التوالي لرتبة توتر صاعدة أو نازلة .

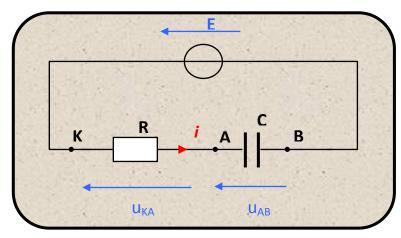
Page 4 الأستاذ : عزيز العطور


التركيب التجريبي المستعمل هو التالي:


قاطع التيار K الموضع 1: ثنائي القطب RC خاضع لرتبة توتر صاعدة

قاطع التيار K الموضع 2: ثنائي القطب RC خاضع لرتبة توتر نازلة

النتائج المحصل عليها كالتالي : نلاحظ نظام انتقالي متبوع بنظام دائم .



Page 5 الأستاذ : عزيز العطور

2 - 2) الاستجابة لرتبة توتر صاعدة .

نطبق قوانين الكهرباء على الدارة السابقة في حالة قاطع التيار في الموضع 1:

$$\mathbf{u}_{\mathrm{KA}}(t) = \mathbf{R}\,\mathbf{i}(t) = \mathbf{R}\,\frac{\mathbf{d}\mathbf{q}_{\mathrm{A}}}{\mathbf{d}t} = \mathbf{R}\mathbf{C}\,\frac{\mathbf{d}\mathbf{u}_{\mathrm{AB}}}{\mathbf{d}t}$$
 $\mathbf{E} = \mathbf{u}_{\mathrm{AB}}(t) + \mathbf{R}\mathbf{C}\,\frac{\mathbf{d}\mathbf{u}_{\mathrm{AB}}}{\mathbf{d}t}$: و منه

at و يمكن أن نكتب كذلك :

$$\frac{du_{AB}}{dt} = -\frac{1}{RC}u_{AB}(t) + \frac{E}{RC}$$

التوتر ${\bf u}_{\rm AB}(t)$ يحقق اذن المعادلة التفاضلية السابقة التي تقبل كحل لها

$$\mathbf{u}_{AB}(t) = \mathbf{K} \mathbf{e}^{-\frac{t}{RC}} + \mathbf{E}$$

 ${f u}_{AB}(t=0)={f K}+{f E}$ ، ${f t}=0$ نحدد الثابتة ${f K}$ باعتماد الشروط البدئية : عندما يكون ${f K}=-{f E}$ فإن ${f u}_{AB}(t=0)={f C}$ فإن ${f u}_{AB}(t=0)={f C}$ خل المعادلة التفاضلية يكتب على الشكل :

$$\mathbf{u}_{AB}(t) = \mathbf{E}\left(1 - \mathbf{e}^{-\frac{t}{RC}}\right)$$

Page 6 الأستاذ : عزيز العطور

2 - 3) الاستجابة لرتبة توتر نازلة .

نضع قاطع التيار في الموضع 2 فنحصل على التركيب التالي:

UKA **U**AB

بتطبيق قانون إضافية التوترات نكتب :
$$u_{AB}(t) + u_{KA}(t) = 0$$
 فنحصل على المعادلة التفاضلية :

$$\frac{du_{_{AB}}}{dt} = -\frac{1}{RC}u_{_{AB}}(t)$$

 $\mathbf{u}_{\mathrm{AB}}(t) = \mathbf{K} \, \mathbf{e}^{-\frac{t}{\mathrm{RC}}}$: و التي حلها يكتب على الشكل كسابقا نحدد الثابتة K باستثمار الشروط البدئية ، و خاصة في حالة $\mathbf{u}_{AB}(t=0)=\mathbf{E}$ ، حيث نحصل

على : $\mathbf{K}\!=\!\mathbf{E}$. حلى الشكل : حل المعادلة التفاضلية يكتب على الشكل :

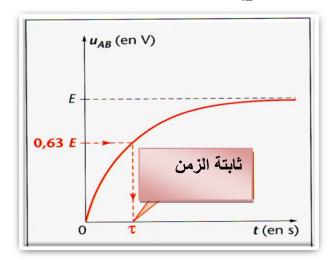
$$\mathbf{u}_{AR}(t) = \mathbf{E}\mathbf{e}^{-\frac{t}{RC}}$$

2 - 4) ثابتة الزمن لثنائي القطب RC .

المعادلتين التفاضليتين السابقتين يضمان نفس الجداء RC . بملاحظة التعبيرين نبحث عن بعد هذا الطرف

$$\frac{du_{_{AB}}}{dt}=-\frac{1}{RC}u_{_{AB}}(t)=-\frac{u_{_{AB}}}{RC}$$

هذا العلاقة تشير إلى أنه متجانس مع الزمن . الجداء au=RC يسمى ثابتة الزمن ، حيث نعبر عنه بوحدة الثانية . بصفة عامة نعتبر أن المكثف مشحون كليا أو مفرغ كليا خلال المدة 57 .

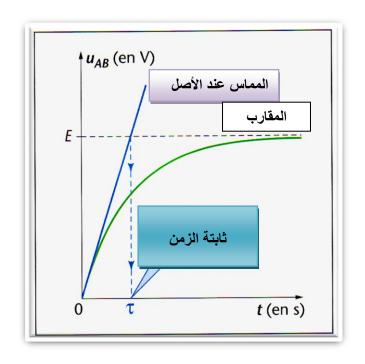

* كيفية تحديد ت مبيانيا .

لنأخذ مثال شحن مكثف

الطريقة الأولى: النسبة %63 .

. t= au عند اللحظة $u_{AB}(t= au)=0.63$ عند اللحظة $u_{AB}(t= au)=0.63$ عند اللحظة عند اللحظة يمكن أن نحسب $u_{AB}(t= au)=0.63$

(أو 37% من E خلال التفريغ) .


الطريقة الثانية: المماس عند الأصل.

 ${f u}_{
m ab}$ أفصول نقطة تقاطع بين المماس عند الأصل للمنحنى ${f u}_{
m ab}(t)$ و مقاربه الأفقى .

$$\mathbf{u}(t) = \mathbf{u}'(t=0) \times \mathbf{t} + 0 = -\frac{\mathbf{E}}{\mathbf{RC}} \mathbf{t} = -1/\tau \times \mathbf{E} \times \mathbf{t}$$
 : البر هنة : المماس له المعادلة :

 $\mathbf{t} = \mathbf{\tau}$ يقطع المقارب $\mathbf{u} = \mathbf{E}$ بالنسبة ل $\mathbf{u} = \mathbf{E}$ أي أن

الأستاذ: عزيز العطور Page 7

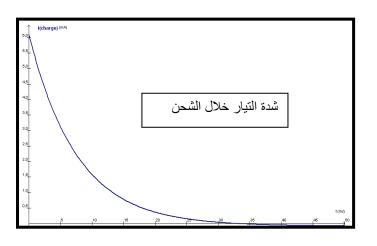
4) تعبير المقادير الكهربائية الأخرى .

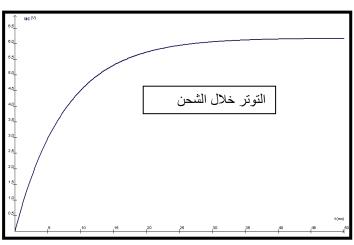
بمعرفة التوتر بين مربطي المكثف $\mathbf{q}(t)=\mathbf{u}_{\mathrm{C}}(t)$ ، نحصل على تعبير كل من شدة التيار $\mathbf{i}(t)$ و الشحنة $\mathbf{q}(t)=\mathbf{u}_{\mathrm{C}}(t)$ المتعلقين بالمكثف . فحسب العلاقة بين الشحنة و التوتر ، نستنتج تعبير الشحنة : $\mathbf{q}_{\mathrm{A}}(t)=\mathbf{C}.\mathbf{u}_{\mathrm{AB}}(t)$

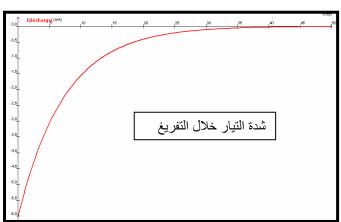
 $i(t) = rac{dq_A(t)}{dt} = C \cdot rac{du_{AB}(t)}{dt}$: من العلاقة بين الشحنة و شدة التيار ، نستنتج تعبير شدة التيار

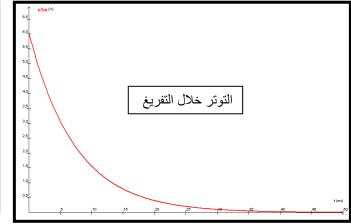
	$\mathbf{u}_{ ext{AB}}(t)$ التوتر	$\mathbf{q}_{\mathrm{A}}(t)$ الشحنة	شدة التيار (i(t
الاستجابة لرتبة توتر صاعدة الشحن	$\mathbf{u}_{\mathrm{AB}}(\mathrm{to}) = 0 \; \mathrm{V}$ عندما یکون $\mathbf{u}_{\mathrm{AB}}(\mathrm{t}) = \mathrm{E} \Bigg(1 - \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \Bigg)$	$\mathbf{q}_{\mathrm{A}}(\mathrm{to})=0\;\mathrm{C},$ عندما نكون $\mathbf{q}_{\mathrm{A}}(\mathrm{t})=\mathrm{CE}\!\left(1\!-\!\mathrm{e}^{-rac{\mathrm{t}}{ au}} ight)$	$\mathbf{i}(t) = \frac{\mathbf{E}}{\mathbf{R}} \; \mathbf{e}^{-\frac{t}{\tau}}$
الاستجابة لرتبة توتر نازلة التفريغ	$\mathbf{u}_{\mathrm{AB}}(\mathrm{to})=\mathrm{E},$ عندما یکون $\mathbf{u}_{\mathrm{AB}}(\mathrm{t})=\mathrm{E}\mathrm{e}^{-rac{\mathrm{t}}{ au}}$	$\mathbf{q}_{\mathrm{B}}(\mathrm{to})=\mathrm{CE}$ عندما تكون, $\mathbf{q}_{\mathrm{A}}(\mathrm{t})=\mathrm{CE}\mathrm{e}^{-rac{\mathrm{t}}{ au}}$	$\mathbf{i}(t) = -\frac{\mathbf{E}}{\mathbf{R}} \mathrm{e}^{-\frac{t}{\tau}}$

الاستجابة لرتبة توتر صاعدة:

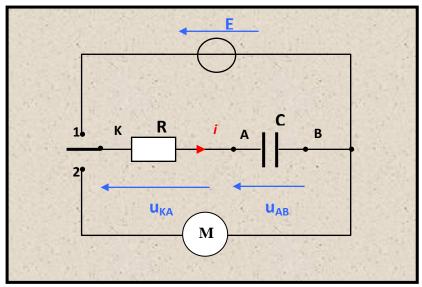

بدئيا شدة التيار تكون قصوية و موجبة $(\frac{\mathbf{E}}{\mathbf{R}})$. منحى التيار هو المنحى المشار إليه ، و شدته تتناقص أسيا لكي تؤول إلى الصفر \mathbf{C} . التوتر بين مربطي المكثف ، كالشحنة ، بدئيا منعدم ثم يتزايد أسيا ليؤول إلى القيمة \mathbf{E}) أو \mathbf{C} بالنسبة للشحنة)


الاستجابة لرتبة توتر نازلة:

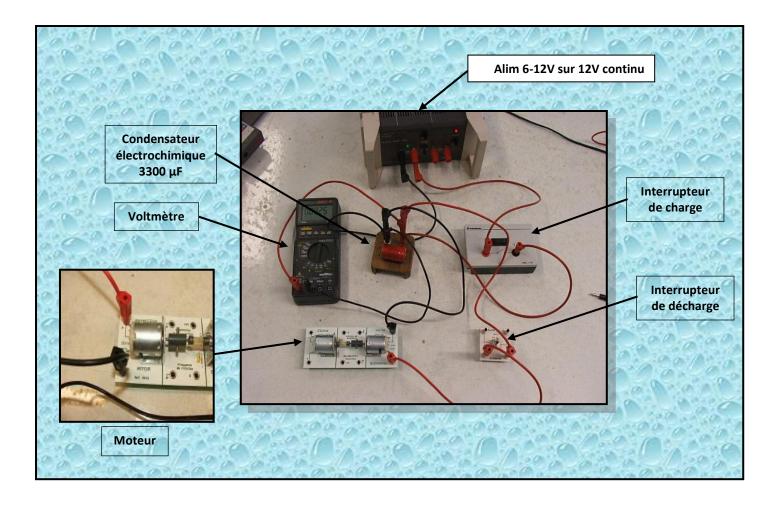

بدئيا شدة التيار دنوية و سالبة $(i = -\frac{E}{R})$. منحى التيار هو عكس المنحى المشار إليه ، و القيمة المطلقة لشدته تتزايد أسيا لكي تؤول إلى 0 .


التوتر بين مربطي المكثف ، كالشحنة ، بدئيا قصوية ثم تتناقص أسيا ليؤول إلى 0 .

Page 8 الأستاذ : عزيز العطور



5) الطاقة المختزنة في المكثف.


للنجز التجربة التالية:

المكثف بدئياً مشحون (بقي قاطع التيار مدة طويلة في الموضع 1) . عندما نؤرجح قاطع التيار إلى الموضع 2 ، نلاحظ اشتغال المحرك M .

الطاقة المكتسبة من طرف المحرك ، تأتي من المحرك ، تأتي من الطاقة المختزنة في المكثف . نستنتج أن المكثف قادر على تخزين الطاقة مؤقتا لكي يعيدها خلال تفريغه .

Page 9

5 - 1) تعبير الطاقة المختزنة في المكثف.

خلال شحن مكثف ذي سعة C بالتوتر $\mathbf{u}_{AB}(t)$ و تحت شدة التيار $\mathbf{i}(t)$ فإنه يكتسب قدرة كهربائية :

$$\mathbf{P}(t) = \mathbf{u}_{AB}(t) \times \mathbf{i}(t)$$

و منه نکتب :

$$P(t) = u_{AB}(t) \times \frac{dq_{A}}{dt}(t) = u_{AB}(t) \times C \frac{du_{AB}}{dt}(t)$$

$$\Rightarrow P(t)dt = u_{AB}(t) du_{AB}(t)$$

و بإنجاز التكامل خلال مدة الشحن ، نحصل على الطاقة المختزنة في المكثف:

$$E(t) = \int P(t) dt = \int C u_{AB}(t) du_{AB}(t) = \frac{1}{2} C u_{AB}^{2}(t)$$

. (دالة متصلة) دالة متصلة) دالة متصلة) . استمرارية التوتر بين مربطي المكثف

تنتقل الطاقة بسرعة محدودة ، اذن تتغير بشكل متصل خلال الزمن . اعتمادا على العلاقة السابقة ، نلاحظ أن :

$$\mathbf{u}_{AB}(t) = \sqrt{\frac{2\mathbf{E}(t)}{\mathbf{C}}}$$

و هذا يفرض تغير متصل للتوتر بين مربطي المكثف.

Page 10