## التحولات السريعة و التحولات البطيئة لمجموعة كيميائية

# 1 ـ تفاعلات أكسدة ـ اختزال :

# 1 ـ 1 مثال لتفاعل أكسدة ـ اختزال

# \*نشاط تجريبي :

ندخل  $1m\ell$  من محلول علورور الحديد (III) ، ندخل  $1m\ell$  ، في أنبوب الاختبار  $T_1$  ، ثم نضيف  $T_2$  من محلول عديم اللون . ندخل  $T_1$  ، ندخل  $T_2$  ، ندخل الخبار بنول عديم اللوب ثم نحرك . لاحظ الشكل  $T_1$  . نعلق الأنبوب ثم نحرك . لاحظ الشكل  $T_2$  .

. (ب) الشكل الشكل الشكل  $2 m \ell$  من السيكلوهكسان ، نغلق ، نحرك ثم نتركه حتى تتم عملية التصفيق الشكل  $2 m \ell$ 

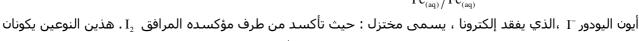
، نأخذ جزء من الطور الموجود في الأسفل ، نضعه في أنبوب اختبار  $_{2}$  و نضيف قطرة بقطرة محلول هيدروكسيد الصوديوم ،

(E)

الشكل 1

. (ج) 1 الشكل Na<sub>(ag)</sub> + HO<sub>(ag)</sub>

#### \*استثمار :


 ${
m I}_2$  اللون البني للطور العضوي (الطور العلوي للأنبوب  ${
m T}_1$  ) يميز وجود ثنائي اليود جريئات ثنائي اليود إذن قد تكونت حسب نصف المعادلة التالية :

$$2I_{(aq)}^{-} \rightleftharpoons I_{2(aq)} + 2e^{-}$$

لون الراسب المتكون في الأنبوب  $m T_2$  يدل على وجود أيونات  $m Fe^{2+}$  ،إذن الطور السغلي للأنبوب  $m T_1$  يحتوي على هذه الأيونات . وبذلك فإن أيونات  $m Fe^{3+}$  اكتسبت إلكترونات لكي تعطي أيونات  $m Fe^{2+}$  حسب نصف المعادلة التالية :

$$\operatorname{Fe}_{(aq)}^{3+} + e^{-} \rightleftharpoons \operatorname{Fe}_{(aq)}^{2+}$$

أيون الحديد  $\operatorname{Fe}^{3+}$  ، الذي يكتسب إلكترونا ، يسمى مؤكسد :حيث اختزل  $\operatorname{Fe}^{2+}$  إلى مختزله المرافق  $\operatorname{Fe}^{2+}$  . هذين النوعين يكونان مزدوجة مختزل/مؤكسد :  $\operatorname{Ee}^{3+}$   $\operatorname{Fe}^{2+}$ 



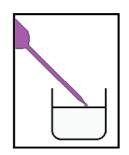
نحصل على معادلة التفاعل بإضافة أنصاف معادلات أكسدة ـ اختزال ، بحيث الايونات  ${
m Fe}^{3+}_{(aq)}$  و  ${
m I}^{-}_{(aq)}$  هي المتفاعلات و أن الإلكترونات المتبادلة لاتظهر في الحصيلة ، لأن لا وجود لها في المحلول المائي :

 $I_{2(aq)}/I_{(aq)}^-$ 

#### 1 ـ 2 تعاریف :

مزدوجة مختزل/مؤكسد:

\*المؤكسـد نوع كيميائي قادر على اكتسـاب إلكترون أو أكثر ؛ المختزل نوع كيميائي قادر على فقدان إلكترون أو أكثر . \*تتكون المزدوجة مختزل/مؤكسـد ( Ox / Red ) من مؤكسـد و مختزله المرافق ، أي مرتبطين بكتابة شـكلية تسـمى نصف


"تفاعل أكسدة ـ اختزال انتقال للإلكترونات من المختزل  $\operatorname{Red}_1$  لمزدوجة  $\operatorname{Ox}_1/\operatorname{Red}_1$  إلى مؤكسد  $\operatorname{Ox}_2$  لمزدوجة أخرى a  $\operatorname{Red}_1+\operatorname{b}\operatorname{Ox}_2$   $\to$  c  $\operatorname{Ox}_1+\operatorname{d}\operatorname{Red}_2$  :  $\operatorname{Ox}_2/\operatorname{Red}_2$ 

# 3 ـ 1 إثبات نصف معادلة أكسدة ـ اختزال :

#### \*تجربة

نفرغ في كأس  $10 \mathrm{m} \ell$  من محلول ثنائي أوكسيد الكبريت  $\mathrm{SO}_{2(\mathrm{aq})}$  ثم نضيف إليه  $1 \mathrm{m} \ell$  من محلول برمنغنات البوتاسيوم المحمض  $\mathrm{SO}_{4(\mathrm{aq})}$  . فنلاحظ اختفاء اللون البنفسجي المميز لايونات  $\mathrm{MnO}_{4}^{-}$  بسرعة .





#### \*استثمار

 ${
m MnO}^-_{4(aq)}\,/{
m Mn}_{(aq)}^{2+}\,$  و  ${
m SO}^{2-}_{4(aq)}\,/{
m SO}_{2(aq)}\,$  : هذا التفاعل هما :  ${
m SO}^-_{4(aq)}\,/{
m SO}_{2(aq)}\,$  و  ${
m SO}^{2-}_{4(aq)}\,/{
m Mn}_{2(aq)}\,$  و  ${
m SO}^{2-}_{4(aq)}\,/{
m Mn}_{2(aq)}\,$  النسبة الطريقة التالية بالنسبة  ${
m MnO}^{-}_{4(aq)}\,/{
m Mn}_{2(aq)}^{2+}\,/{
m Mn}_{2(aq)}^{2+}\,$  :

 $\mathrm{MnO}_{4(\mathrm{aq})}^{-} + \mathrm{ne}^{-} \; 
ightharpoonup^{2+}$  : اختزال على الشكل الشكل أكتب نصف معادلة أكسدة ـ اختزال على الشكل

 $\mathrm{MnO}_{4(\mathrm{aq})}^- + \mathrm{ne}^- \;
ightharpoonup \;\mathrm{Mn}_{(\mathrm{aq})}^{2+}$  : (Mn) غنصر المنغنيز (ب)

 ${
m MnO}^-_{4({
m aq})} + {
m ne}^- \;\;
ightharpoonup \;\; {
m Mn}^{2+}_{({
m aq})} + 4{
m H}_2{
m O}_{(\ell)} \;\; :$  حقق انحفاظ عنصر الأوكسجين بإضافة جزيئات الماء التي تمثل المذيب

: (الوسط محمض)  $H^+_{(a0)}$  انحفاظ عنصر الهيدروجين بإضافة أيونات الهيدروجين المميهة الهيدروجين بإضافة أيونات الهيدروجين الهيدروجين بإضافة أيونات الهيدروجين المميهة الهيدروجين بإضافة أيونات الهيدروجين الهيدرو

 $MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + ne^{-} \ \ \rightleftarrows \ \ Mn_{(aq)}^{2+} + 4H_{2}O_{(\ell)}$ 

 ${
m MnO}^-_{4({
m aq})} + 8{
m H}^+_{({
m aq})} + 5{
m e}^- \;\; 
ightleftharpoons \;\; {
m Mn}^{2+}_{({
m aq})} + 4{
m H}_2{
m O}_{(\ell)}$  : ده)

#### \*تمرین تطبیقی :

أثبت نصف معادلات الأكسدة و الاختزال للمزدوجات التالية:

 $CO_{2(aq)} / H_2 C_2 O_{4(aq)}$  (2)

 $SO_{4(aq)}^{2-}/SO_{2(aq)}$  (1)

:  $SO_{4(aq)}^{2-}/SO_{2(aq)}$  نصف معادلة المزدوجة (1)

 $SO_{4(aq)}^{2-} + ne^- \iff SO_{2(aq)}$  \_ \_

ب ـ عنصر الكبريت منحفظ

 $\mathrm{SO}_{4(\mathrm{aq})}^{2-} + \mathrm{ne}^- \; 
ightharpoonup \; \mathrm{SO}_{2(\mathrm{aq})} + 2\mathrm{H}_2\mathrm{O}_{(\ell)}$ : ج ۔ انحفاظ عنصر الأوكسجين

 $SO_{4(aq)}^{2-} + 4H_{(aq)}^+ + ne^- \implies SO_{2(aq)} + 2H_2O_{(\ell)}$  : د ـ انحفاظ عنصر الهيدروجين

 $\mathrm{SO}^{2-}_{4(\mathrm{aq})} + 4\mathrm{H}^+_{(\mathrm{aq})} + 2\mathrm{e}^- \;\; \rightleftarrows \;\; \mathrm{SO}_{2(\mathrm{aq})} + 2\mathrm{H}_2\mathrm{O}_{(\ell)}$  : ه ـ انحفاظ الشحنات

:  $CO_{2(aq)} / H_2C_2O_{4(aq)}$  نصف معادلة المزدوجة (2)

 $CO_{2(aq)} + ne^- \iff H_2C_2O_{4(aq)}$  -  $\hat{I}$ 

 $2 CO_{2(aq)} + ne^- \;\; \rightleftarrows \;\; H_2 C_2 O_{4(aq)} \; : ب ـ انحفاظ عنصر الكربون$ 

ج ـ عنصر الأوكسجين منحفظ

 $\mathrm{CO}_{2(\mathrm{aq})} + 2\mathrm{H}_{(\mathrm{aq})}^+ + \mathrm{ne}^- \;\; 
ightleftharpoons \;\; \mathrm{H}_2\mathrm{C}_2\mathrm{O}_{4(\mathrm{aq})} \;\; :$ د ـ انحفاظ عنصر الهيدروجين

 $\mathrm{CO}_{2(\mathrm{aq})} + 2\mathrm{H}_{(\mathrm{aq})}^+ + 2\mathrm{e}^- \;\; \rightleftarrows \;\; \mathrm{H}_2\mathrm{C}_2\mathrm{O}_{4(\mathrm{aq})}$  : ه ـ انحفاظ الشحنة

## 2 ـ التحولات السريعة و التحولات البطيئة :

## 1 ـ 2 التحولات السريعة :

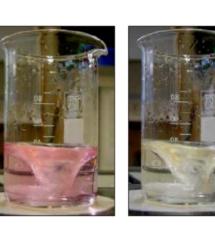
في تجربة الفقرة 1 اختفاء اللون البنفسجي المميز لأيونات  $\mathrm{MnO}_{4(\mathrm{aq})}^{-}$  يدل على أن هناك تفاعل بين هذه الأيونات و جزيئات  $\mathrm{SO}_{2(\mathrm{an})}$  .  $\mathrm{SO}_{2(\mathrm{an})}$ 

$$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} \Longrightarrow Mn_{(aq)}^{2+} + 4H_{2}O_{(\ell)}$$
  
 $SO_{2(aq)} + 2H_{2}O_{(\ell)} \Longrightarrow SO_{4(aq)}^{2-} + 4H_{(aq)}^{+} + 2e^{-}$ 

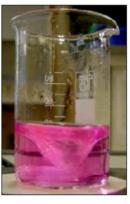
 $2\mathrm{MnO}^-_{4(\mathrm{aq})} + 5\mathrm{SO}_{2(\mathrm{aq})} + 2\mathrm{H}_2\mathrm{O}_{(\ell)} \to 2\mathrm{Mn}^{2+}_{(\mathrm{aq})} + 5\mathrm{SO}^{2-}_{4(\mathrm{aq})} + 4\mathrm{H}^+_{(\mathrm{aq})}$  : ومنه ،فإن معادلة التفاعل هي

كل الأنواع الكيميائية لهذا التفاعل أنواع عديمة اللون . الوسط التفاعلي مباشرة بعد إضافة  $\mathrm{MnO}^-_{4(\mathrm{aq})}$  عديم اللون ، مما يدل الاختفاء الآني لهذه الأيونات . نقول بأن التحول سريع .

نقول بأن تحولا ما تحولا سريعا عندما يكون تطور المجموعة سريعا ، حيث يظهر أن التحول قد انتهى مباشرة بعد التقاء المتفاعلات .


\*ملحوظة: هناك عدة تفاعلات سريعة ، مثل ، تفاعلات الترسب و تفاعلات حمض ـ قاعدة .

## 2 ـ 2 التحولات البطيئة :


#### \*نجربة :

في كأس نضع  $10 \mathrm{m} \ell$  من محلول حمض الأوكساليك  $\mathrm{H}_2\mathrm{C}_2\mathrm{O}_{4(\mathrm{aq})}$  ، ثم نضيف إليه  $1 \mathrm{m} \ell$  من محلول محمض لبرمنغنات البوتاسيوم .  $\mathrm{C}_2\mathrm{O}_{4(\mathrm{aq})}$  تركيزه  $\mathrm{C}_4\mathrm{m} \ell \ell \ell^{-1}$  تركيزه  $\mathrm{C}_4\mathrm{m} \ell \ell \ell^{-1}$ 

. نلاحظ أن اللون البنفسجي لأيونات  ${
m MnO}_{4(aq)}^-$  يختفي تدريجيا مع مرور الزمن









.  $m H_2C_2O_{4(aq)}$  الاختفاء التدريجي للون البنفسجي يدل على حدوث تفاعل بين أيونات  $m MnO_{4(aq)}^-$  و حمض الأوكساليك :  $m CO_{2(aq)}$  /  $m H_2C_2O_{4(aq)}$  و  $m MnO_{4(aq)}^-$  /  $m Mn_{(aq)}^{2+}$  أنصاف المعادلات المقرونة بالمزدوجات المتذخلة في التفاعل  $m MnO_{4(aq)}^-$  /  $m Mn_{4(aq)}^{2+}$ 

$$\begin{aligned} &MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} &\rightleftharpoons Mn_{(aq)}^{2+} + 4H_{2}O_{(\ell)} \\ &H_{2}C_{2}O_{4(aq)} &\rightleftharpoons 2CO_{2(aq)} + 2H_{(aq)}^{+} + 2e^{-} \end{aligned}$$

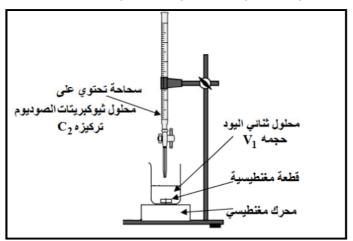
 $2 \mathrm{MnO}_{4(\mathrm{aq})}^- + 6 \mathrm{H}_{(\mathrm{aq})}^+ + 5 \mathrm{H}_2 \mathrm{C}_2 \mathrm{O}_{4(\mathrm{aq})}^- o 2 \mathrm{Mn}_{(\mathrm{aq})}^{2+} + 8 \mathrm{H}_2 \mathrm{O}_{(\ell)} + 10 \mathrm{CO}_{2(\mathrm{aq})}^-$  و منه فالمعادلة الحصيلة هي :  $\mathrm{MnO}_{4(\mathrm{aq})}^- + 6 \mathrm{H}_{(\mathrm{aq})}^+ + 6 \mathrm{H}_{2}^+ \mathrm{O}_{(\ell)}^- + 10 \mathrm{CO}_{2(\mathrm{aq})}^-$  كل الأنواع الكيميائية لهذا التفاعل أنواع عديمة اللون باستثناء أيونات

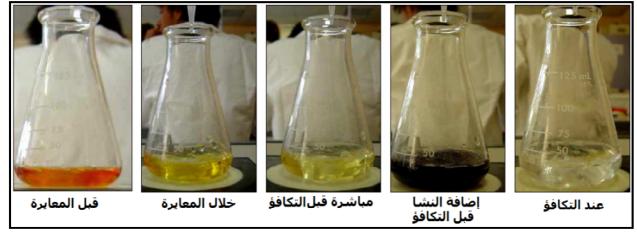
الاختفاء التدريجي للون البنفسجي يدل على أن التحول الكيميائي بطيء .

التحول البطيء تحول تطوره مع الزمن يستغرق بعض الثواني ، عدة دقائق أو ساعات . حيث يمكن تتبع هذا التطور بالعين المجردة أو بأحد اجهزة القياس .

#### 3 ـ تحديد تركيز نوع كيميائي في محلول :

لتحديد تركيز نوع كيميائي في محلول ، نقوم بمعايرته . حيث نضيف للمحلول المعاير نوع كيميائي آخر يسـمى محلول معاير ، مذخل بكمية مادة معروفة . التفاعل الحاصل ، ذي معادلة معروفة ، يسـمى تفاعل المعايرة . نقطة تكافؤ المعايرة توافق خليط تناسـبى للمتفاعلات ( المعاير و المعايَر ) .


Page 3 الأستاذ : عزيز العطور


# : ( $Na_{(aq)}^+ + S_2O_{3(aq)}^{2-}$ ) معايرة محلول ثنائي اليود $I_{2(aq)}$ بمحلول ثيوكبريتات الصوديوم \*

 $I_{2(aq)}\,/\,I_{(aq)}^{-}\,$  و  $S_4O_{6(aq)}^{2-}\,/\,S_2O_{3(aq)}^{2-}\,$  : المزدوجتين المتذخلتين في التفاعل هما

أيونات الثيوكبريتات  $S_2O_{3(aq)}^{2-}$  تتفاعل مع جزيئات ثنائي اليود  $I_{2(aq)}$  حسب تفاعل سريع ، حيث نحصل على أيونات اليودور أيونات اليودور  $S_2O_{3(aq)}^{2-}$  :  $S_4O_{6(aq)}^{2-}$  :

$$I_{2(aq)} + 2S_2O_{3(aq)}^{2-} \rightarrow 2I_{(aq)}^{-} + S_4O_{6(aq)}^{2-}$$





.  $V_1$  كمية مادة ثنائي اليود المتواجدة بدئيا في الحجم  $n_{_1}(I_{_2})$ 

يمكن استعمال جدول التقدم لتحديد العلاقة التي تربط بين كميات المادة عند التكافؤ ، حيث أضيف الحجم  $m V_{2E}$  من ثيوكبريتات الصوديوم .

| $I_{2(aq)}$                        | + $2S_2O_{3(aq)}^{2-}$                | $\rightarrow \qquad 2I_{(aq)}^{-} \qquad + \qquad$ | $S_4O_{6(aq)}^{2-}$       | المعادلة الكيميائية                 |
|------------------------------------|---------------------------------------|----------------------------------------------------|---------------------------|-------------------------------------|
| $n_{i}(I_{2}) = C_{1} \cdot V_{1}$ | $n_E(S_2O_3^{2-}) = C_2 \cdot V_{2E}$ | 0                                                  | 0                         | كميات المادة المذخلة<br>عند التكافؤ |
| $C_1 \cdot V_1 - X_E = 0$          | $C_2 \cdot V_{2E} - 2x_E = 0$         | $2x_{\rm E}$                                       | $\mathbf{x}_{\mathrm{E}}$ | الحالة النهائية                     |

 $n_i(I_2) = C_1 \cdot V_1 = \frac{C_2 \cdot V_{2E}}{2}$ 

بمعرفة الحجم  $\, \mathrm{V}_{\scriptscriptstyle 2E} \,$  و  $\, \mathrm{C}_{\scriptscriptstyle 2} \,$  نحسب كمية مادة ثنائي اليود البدئية ثم تركيزه .

## 4 ـ العوامل الحركية :

عند التكافؤ:

التطور الزمني للمجموعات الكيميائية يتعلق أولا بطبيعة المتفاعلات المتدخلة . ثانيا بعوامل أخرى يمكن أن تؤثر على سرعة تحول مجموعة كيميائية معينة .

Page 4 الأستاذ : عزيز العطور

العوامل المؤثرة على سرعة تطور مجموعة كيميائية تسمى العوامل الحركية.

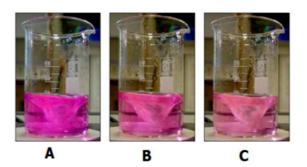
## 1 ـ 4 تأثير تركيز المتفاعلات:

 $H_2C_2O_{4(aq)}$  في وسط حمضي تتفاعل مع حمض الأوكساليك  $H_2C_2O_{4(aq)}$  حسب  $H_2C_2O_{4(aq)} + 6H_{(aq)}^+ + 5H_2C_2O_{4(aq)} \rightarrow 2Mn_{(aq)}^{2+} + 8H_2O_{(\ell)} + 10CO_{2(aq)}$  : المعادلة الكيميائية التالية :

# أ ـ مناولة :

نتوفر على محلول محمض لبرمنغنات البوتاسيوم تركيزه  $m C_1 = 2.10^{-3}\,mol/L$  و محلول لحمض الأوكساليك تركيزه

. V لتحضير ثلاثة خلائط لها نفس الحجم  $C_3 = 0.5 mol/L$ 


: بالتتابع حجم محلول برمنغنات البوتاسيوم ، حجم الماء و حجم محلول حمض الأوكساليك بحيث  $V_2, V_1$  و  $V_2, V_1$  و  $V_2, V_3 = 20 \mathrm{mL}$ 

 $\mathbf{V}_{_{2}}$  و  $\mathbf{V}_{_{1}}$  في مرحلة أولى نمزج في ثلاثة كؤوس الحجمين  $\mathbf{v}_{_{1}}$  و

.  $V_3$  نضيف في كل كأس الحجم $V_3$ 

#### فنحصل على جدول القياسات التالي:

| C                  | В           | A           | الخليط                                                                    |
|--------------------|-------------|-------------|---------------------------------------------------------------------------|
| 5                  | 5           | 5           | $V_1(mL)$                                                                 |
| 3                  | 6           | 9           | V <sub>2</sub> (mL)                                                       |
| 12                 | 9           | 6           | V <sub>3</sub> (mL)                                                       |
| 5.10 <sup>-4</sup> | $5.10^{-4}$ | $5.10^{-4}$ | $\left[MnO_{4}^{\scriptscriptstyle{-}}\right]_{i}\left(mol/L\right)$      |
| 0,300              | 0,225       | 0,150       | $\left[\mathrm{H_2C_2O_4}\right]_{\mathrm{i}}\left(\mathrm{mol/L}\right)$ |
| 220                | 260         | 300         | $\Delta t(s)$                                                             |



عند لحظة معينة اللون مختلف في كل كأس

#### ں ـ استثمار:

الخلائط المستعملة لها نفس التركيز البدئي من أيونات البرمنغنات ، بينما تركيز بدئي مختلف من حمض الأوكساليك :هذه السلسة من التجارب تمكن إذن من دراسة تأثير التركيز البدئي من حمض الأوكساليك  $\left[ H_2 C_2 O_4 \right]$  .

نلاحظ أن المدة ∆ل لإختفاء اللون البنفسجي تنقص كلما ازداد التركيز البدئي لحمض الأوكساليك .

سرعة تطور مجموعة كيميائية تزداد كلما ازداد التركيز البدئي للمتغاعلات .

## 2 ـ 4 درجة الحرارة

لنلاحظ تأثير محلول حمض الأوكساليك  $H_2C_2O_4(aq)$  على محلول برمنغنات البوتاسيوم ((K<sup>+</sup>(aq) + MnO $_4$ -(aq)) في مثلج ، عند درجة الحرارة العادية ثم في حمام مريم .

إزالة اللون تكون أسرع كلما كانت درجة الحرارة مرتفعة .

درجة الحرارة تؤثر بطريقتين مختلفتين على التحولات الكيميائية:

- ـ تسريع ، أو إحداث تحول نتيجة ارتفاع درجة الحرارة .
  - ـ خفض سرعة تحول ، أو توقيفه نتيجة تبريده .

#### أ ـ مناولة :

في ثلالة كؤوس نضع ( من اليسار إلى اليمين ) قطع من الجليد ، ماء الصنبور ثم ماء ساخن .

Page 5 الأستاذ : عزيز العطور

<sup>.</sup> Mn ${
m O}_{4(a0)}^-$  نحدد المدة الزمنية  $\Delta t$  اللازمة لإختفاء اللون البنفسجي المميز لأيونات \*

في كل كأس نضع أنبوبين الأول يحتوي على 10 mL من الماء الأوكسيجيني المحمض تركيزه المولي  $10 \text{mol.} \ell^{-1}$  ، و الثاني به  $10 \text{mol.} \ell^{-1}$  من محلول يحتوي على أيونات اليودور  $1_{(\text{aq})}^{-1}$  تركيزه المولي  $10 \text{mol.} \ell^{-1}$  . عند لحظة معينة نعتبرها أصلا للتواريخ ، نمزج محتوى أنبوبي كل كأس ثم نشغل ميقت .



نلاحظ أن الخليط يتلون بشدة كلما كانت درجة الحرارة مرتفعة ، حيث أن ارتفاع درجة الحرارة يزيد من سرعة التفاعل . في المقابل يمكن توقيف التفاعل أو جعله يتم ببطئ عند تبريده :



سرعة تحول مجموعة كيميائية تزداد مع تزايد درجة الحرارة

Page 6 الأستاذ : عزيز العطور