المعايرة ال pH ـ مترية

الحليب سائل بيولوجي يتحلل بتحول الاكتوز إلى حمض الاكتيك . طريقة لمراقبة جودة الحليب تعتمد على معايرة هذا الحمض :

. درجة دورنيك D : (Dornic) درجة دورنيك O : (Dornic) درجة دورنيك الحليب .

. 18° D و 13° D حليب البقر الطري له ما بين

كيف نتوصل إلى " معايرة " هذه الحمضية ؟

1) عموميات و تذكير حول المعايرة الحمض ـ قاعدية .

1 ـ 1) مبدأ المعايرة الحمض ـ قاعدية .

معايرة محلول أو محلول قاعدي تتمثل في تحديد تركيزه ، باعتماد تفاعل حمض ـ قاعدة يسمى تفاعل المعايرة . هذا التفاعل يتميز بكونه :

ـ سـريعا

ـ و حيدا : لايجب أن تكون هناك أنواع كيميائية مشوشة ، حيث يمكن أن تنتج أو تستهلك المتفاعلات أو النواتج المتذخلة في تفاعل المعايرة .

ـ کلیا

إذا كان المحلول المعايَر محلولا حمضيا ، نضيف إليه تدريجيا محلولا معايِرا قاعديا تركيزه معروف. إذا كان المحلول المعايَر محلولا قاعديا ، نضيف إليه تدريجيا محلولا معايرا حمضيا تركيزه معروف .

1 ـ 2) تكافؤ المعايرة الحمض ـ قاعدية .

إضافة المعاير يجب أن تمكن من تعيين لحظة معينة حيث المتفاعلات المعايرة و المعايرة تكون قد استهلكت بالكامل : التكافؤ. عند التكافؤ ، المتفاعل المعاير و المتفاعل المعاير يكونا في الشروط الستوكيومترية للتفاعل .

: إذا كان رمز الحجم المضاف من المعاير هو $\, {
m V} \,$ و المضاف عند التكافؤ هو $\, {
m V}_{\scriptscriptstyle
m E} \,$ فإن

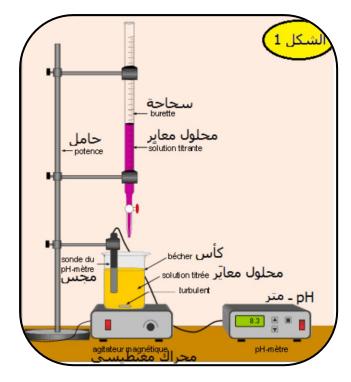
- . بالنسبة ل $V < V_F$ المتفاعل المعاير هو المحد
- . بالنسبة ل $V > V_E$ المتفاعل المعايّر هو المحد

في حالة المعايرة الحمض ـ قاعدية ، عند التكافؤ ، كمية مادة القاعدة أو الحمض المضافة للمحلول المعايِر تساوي كمية مادة الحمض أو القاعدة المتواجدة بدئيا في المحلول المعاير . حيث أن المعاملات الستوكيومترية الموافقة للحمض أو القاعدة تساوي 1.

عند التكافؤ ، لدينا إذن:

n(القاعدة المضافة) = n(العمض المذخل) القاعدة المذخلة) القاعدة المذخلة) القاعدة المذخلة) القاعدة المذخلة

هذه العلاقة هي تمكن من تحديد التركيز المجهول .

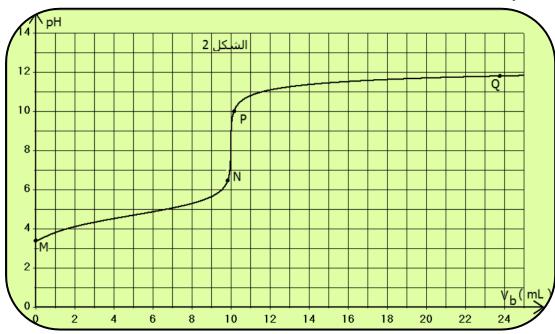

في السنة الأولى من سنة البكالوريا قمنا بمعايرة حمض ـ قاعدية ملوانية و بتتبع الموصلية . المبدأ هونفسه بالنسبة للمعايرة ال pH _ مترية ، فقط طريقة التتبع تختلف .

2) التتبع ال pH ـ متري لمعايرة حمض ـ قاعدية .

2 ـ 1) تقنية المعايرة و التركيب التجريبي .

- د نضع المحلول المعايّر في كأس : مثلا نسكب حجما $V_{\rm A}$ من محلول حمضي تركيزه المولي $C_{\rm A}$ ، ثم نضيف الماء المقطر حتى يسـهل غمر مجس جهاز ال pH و متر في المحلول .
 - . $C_{
 m B}$ نملأ السحاحة بالمحلول المعاير (محلول قاعدي في مثالنا) ذي التركيز المولي
- ے نضیف تدریجیا المحلول القاعدی (المعایِر) على المحلول الحمضي (المعایَر) ، و نسجل قیمة pH الخلیط في كل مرة نضیف فيها حجما معینا V_B (الشكل D) .
 - . $pH = f(V_B)$: أي V_B أي V_B الخليط بدلالة حجم المحلول المعايرة الذي يمثل تغيرات $pH = f(V_B)$

Page 1 الأستاذ : عزيز العطور



2 ـ 2) مثال 1 : معايرة محلول حمض الإيتانويك بواسطة محلول الصودا (محلول هيدروكسيد الصوديوم) .

نضع في كأس الحجم $V_a = 20 m \ell$ من محلول حمض الإيتانويك ، ثم نضيف تدريجياً بواسطة السحاحة محلول الصودا الذي تركيزه $V_a = 20 m \ell$ من محلول عمض الإيتانويك ، ثم نصبحل قيمة pH الخليط بالنسبة لكل إضافة ذات الحجم $V_b = 2,0 \times 10^{-2} \, \mathrm{mo} \ell \, \ell$ المعايرة $pH = f(V_b)$

 $\mathrm{CH_{3}COOH_{(aq)}} + \mathrm{HO_{(aq)}^{-}} \ \to \ \mathrm{CH_{3}COO_{(aq)}^{-}} + \mathrm{H_{2}O_{(\ell}}$: معادلة تفاعل المعايرة

ـ منحني المعايرة :

ـ تحليل منحني المعايرة :

- . في الجزء MN حيث $0 < V_b < 9,9$ mL نتزايد قيمة MN .
- . (pH بسرعة كبيرة جدا (قفزة ال pH : تتزايد قيمة pH بسرعة كبيرة جدا (قفزة ال PH . في الجزء PH حيث PH حيث PH .
- . في الجزء PQ حيث 10,1mL < $V_{
 m b}$: تتزايد قيمة 10,1mL < $V_{
 m b}$ ببطئ و تؤول إلى قيمة حدية (المنحنى يؤول إلى مقارب أفقي) .

Page 2 الأستاذ : عزيز العطور

* ملحوظة : نبيِّن أن نقطة التكافؤ التي نرمز لها ب E توجد في الجزء PH حيث يتغير PH بسرعة كبيرة جدا (أي خلال قفزة ال PH) . بالنسبة لهذا الحجم ، المعامل الموجه لمماس المنحنى له قيمة قصوية (المماس رأسي) . حجم التكافؤ إذن يوافق أفصول القيمة القصوية للدالة $\frac{dpH}{dV_b} = f(V_b)$.

ـ نقطة التكافؤ : يحدث التكافؤ عندما تكون المتفاعلات في الشروط الستوكيومترية للتفاعل . التكرير E يتعلق التكافؤ . ودرجا تكون بـ كردة الرادة الرادة الرادة الرادة الرادة الرادة الروز الروز المعافة التامرية

 ${
m n}_{\scriptscriptstyle E}$ لتكن ${
m n}_{\scriptscriptstyle 0}$ نقطة التكافؤ ، عندها تكون : كمية المادة البدئية للحمض كمية المادة المضافة للقاعدة ${
m E}$

$$n_0(CH_3COOH) = n_E(HO^-)$$

$$C_{a}.V_{a}=C_{b}.V_{bE}$$
 \Rightarrow $C_{a}=C_{b}.rac{V_{bE}}{V_{a}}$: نا

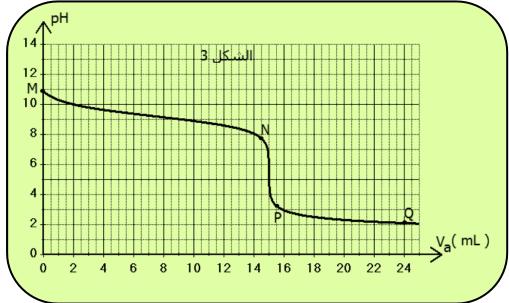
$$m V_{bE} = 10mL$$
 : مبیانیا نجد

$$C_a = 2,0 \times 10^{-2}.\frac{10}{20}$$
 \Rightarrow $C_a = 1,0 \times 10^{-2} \, \text{mol} \, \ell$: و بالتالي

2 ـ 3) مثال 2 : معايرة محلول الأمونياك بواسطة محلول حمض الكلوريدريك .

نضع في كأس الحجم $m V_b = 20 mL$ من محلول غاز الأمونياك $m NH_3$ ، ثم نضيف عليه تدريجيا محلول حمض الكلوريدريك

.
$$C_a = 4,0x10^{-2}\,\text{mo}\ell\,\ell$$
 الموجود في السحاحة ذي التركيز المولي ($H_3O_{(aq)}^+ + C\ell$


. 3 الشكل . $pH = f(V_a)$ المبيان ، ثم نرسم المبيان . $pH = f(V_a)$ الشكل .

$$NH_{3(aq)} + H_3O_{(aq)}^+ \longrightarrow$$

$$NH_{4(aq)}^{+} + H_{2}O_{(\ell)}$$

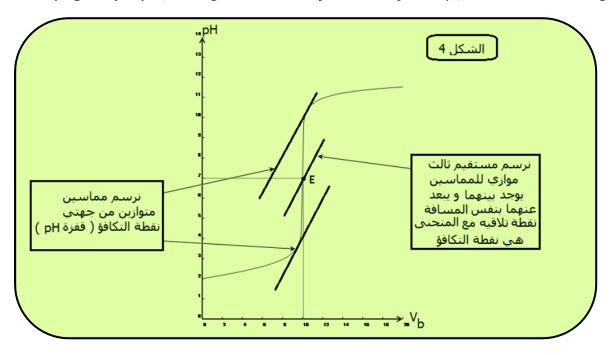
ـ معادلة تفاعل المعايرة :

ـ عند نقطة التكافؤ E

$$C_{_{b}}.V_{_{b}}=C_{_{a}}.V_{_{aE}} \qquad \qquad \Longrightarrow \qquad \qquad C_{_{b}}=C_{_{a}}.\frac{V_{_{aE}}}{V_{_{b}}}$$

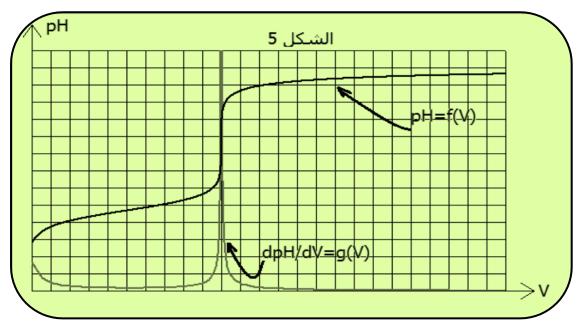
 $m V_{aE}$ = 15mL : مبيانيا نجد الحجم المضاف عند التكافؤ

$$C_{\rm b} = 4,0 {\rm x} 10^{-2}. {15 \over 20}$$
 \Rightarrow $C_{\rm b} = 3,0 {\rm x} 10^{-2} \, {\rm mo} \ell \, \ell$: و بالتالي :


* **ملحوظة :** توجد نقطة التكافؤ في الجزء NP حيث تتغير قيمة pH بشكل مفاجئ (تغير سريع جدا) .

Page 3 الأستاذ : عزيز العطور

3) كيفية تعيين نقطة التكافؤ .


3 ـ 1) طريقة المماسات المتوازية :

نرسم مماسين لمنحنى المعايرة ، متوازين عند جزئي المنحنى الأكثر انعطافا . ثم نرسم المستقيم الموازي للمماسين و الذي يمر من منتصف القطعة الفاصلة بينهما . فتكون نقطة التكافؤ $\, {
m E} \,$ نقطة تقاطعه مع المنحنى . (أنظر الشكل 4)

. $\frac{dpH}{dV}$ = f(V) طريقة الدالة المشتقة (2 ـ 3

 $rac{dpH}{dV}$ = g(V) ، ثم كذلك رسم المنحنى و حاسوب من رسم منحنى المعايرة pH = f(V) ، ثم كذلك رسم المنحنى g(V) = g(V) . الشكل 5 حجم التكافؤ يوافق قيمة قصوية ل g(V)) و غيمة دنوية في حالة معايرة قاعدة . الشكل 5

Page 4 الأستاذ : عزيز العطور

3 ـ 3) الطريقة الملوانية .

نضيف في الكأس الذي به المحلول المعايَر ، عند بداية المعايرة ، بعض قطرات من كاشف ملون مناسب (الذي يحتوي مجال انعطافه على قيمة pH عند التكافؤ : $pH_{\scriptscriptstyle E}$) .

نحصل على التكافؤ لحظة تغير لون الكاشف في الخليط . الشكل 6

*مثال : معايرة حمض قوي بقاعدة قوية .

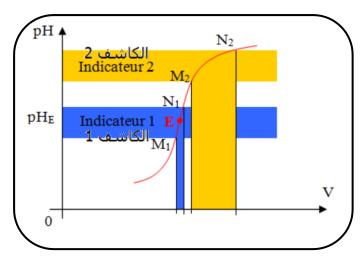
 $C_a = 1,0 ext{x} 10^{-2} \, ext{mo} \ell \, \ell$ تركيزه المولي $\left(ext{H}_3 ext{O}^+(aq) + ext{CI}^-(aq)
ight)$ تركيزه المولي $\left(ext{Na}^+(aq) + ext{Ho}^-(aq)
ight)$ تركيز المولي . $C_b = 1,0 ext{x} 10^{-2} \, ext{mo} \ell \, \ell$ تركيز المولي $\left(ext{Na}^+(aq) + ext{HO}^-(aq)
ight)$ تركيز المولي .

$$H_3O^+(aq)+HO^-(aq)$$
 \Longrightarrow (l) دمعادلة المعايرة هي عبدول التقدم :

معادلة التفاعل		H₃O⁺(aq) -	+ HO ⁻ (aq) =	= 2 H ₂ O (I)
حالة المجموعة	التقدم	n _{H₃O} +	n _{HO} -	n _{H₂O}
الحالة البدئية	0	c_aV_a	c_bV_E	
الحالة الوسيطية	х	c_aV_a-x	c_bV_E-x	مذیب
الحالة النهائية	X _f	$c_aV_a - x_f$	$c_bV_E-x_f$	

: نستنتج أن كي الحالة النهائية ، و بما أننا عند التكافؤ ، $C_{\rm b}.V_{\rm E}-x_{\rm f}=0$ و $C_{\rm a}.V_{\rm a}-x_{\rm f}=0$ نستنتج

$$\boldsymbol{c}_{a}\,\boldsymbol{V}_{a}\,=\boldsymbol{c}_{b}\,\boldsymbol{V}_{E}$$


$$V_{\rm E}=rac{c_{
m a}V_{
m a}}{c_{
m b}}$$
 : و منه

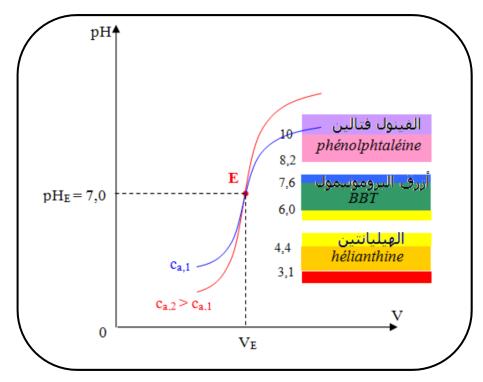
$$V_{\rm E} = \frac{1,0.10^{-2} \times 10,0.10^{-3}}{1,0.10^{-2}} = 10,0.10^{-3} \, {\rm L} = 10,0 \, {\rm mL}$$
 : تطبیق عددي

في هذه الحالة pH التكافؤ يساوي 7 ، حيث أن أيونات H_3O^+ و H_3O^+ أذخلت بكميات مادة متساوية و قد تفاعلت كليا . نحصل عند التكافؤ نحصل على محلول كلورور الصوديوم يحتوي على على كمية مادة متساوية من أيونات الأوكسونيوم و أيونات الهيدروكسيد (هذين الأيونين آتيين من التحلل الذاتي للماء) .

اختيار الكاشف الملون المناسب يستنتج اعتمادا على مجال انعطافه الممثل على المنحنى pH = f(V) حجم المحلول

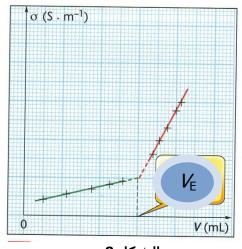
المعاير المضاف .

مجال انعطاف الكاشف الملون 1 باللون الأزرق و بالأصفر مجال انعطاف الكاشف الملون 2 .

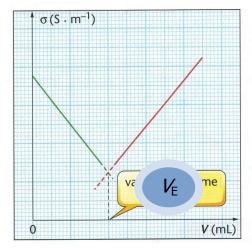

 $m V_{\scriptscriptstyle E}$ بالنسبة للكاشف 1 ، انعطافه يتم انطلاقا من النقطة $m M_{\scriptscriptstyle I}$ و ينتهي عند النقطة $m N_{\scriptscriptstyle I}$. أفصولي هاتين النقطتين يؤطران الحجم و بذلك فإن تغير لون الكاشف يمكن من تحديد التكافؤ . m c

. $m N_2$ و $m M_2$ و الكاشف الملون 2 غير مناسب لأن $m V_E$ لا توجد في مجال أفصولي النقطتين

في معايرة ملوانية ، نختار الكاشف الملون الذي مجال انعطافه يحتوي على pH نقطة التكافؤ .


Page 5 الأستاذ : عزيز العطور

نرسم في الوثيقة أسفله مجالات انعطاف عدة كواشف ملونة على منحنى معايرة محاليل لحمض الكلوريدريك بمحاليل لهيدروكسيد الصوديوم لها نفس التركيز . نلاحظ أن الكاشف أزرق البروموتيمول هو المناسب في الحالتين :



. σ طريقة المعايرة بقياس الموصلية (4 ـ 3

يمكن استعمال جهاز قياس الموصلية σ بالنسبة للخليط التفاعلي خلال المعايرة الحمض ـ قاعدية ، و ذلك بالنسبة لكل حجم مضاف $V_{\rm E}$. الشكلين 7 و 8 مضاف σ . بستنتج الحجم عند التكافؤ σ . الشكلين 7 و 8

الشكل 8 معايرة محلول حمض الإيتانويك بمحلول الصودا

الشكل **7** معايرة حمض الكلوريدريك بمحلول الصودا

Page 6 الأستاذ : عزيز العطور