
فرض رقم 2 الدورة الثانية ع ف 1

الفيزياء 1 8،75نقطة دراسة حركة الدوران + حركة الأزاحة + قديفة في مجال الثقالة

نعتبر التركيب التجريبي الشكل1: الاحتكاكات مهملة على المسار الأفقي و المائل

- و مركز قصوره G_1 ، قابل للانزلاق فوق مستوى أفقي $m_1 = 100$ g جسم صلب S_1
- $lpha=30^\circ$ و مركز قصوره G_2 ، قابل للانزلاق فوق مستوى مائل بزاوية $m_2=200$ و مركز قصوره $\Phi_2=30^\circ$
- أسطوانة P ، متجانسة شعاعها m r = 5cm ، قابلة للدوران حول محور ثابت $m \Delta$ متعامد معها ويمر من مركزها.
 - خيط غير قابل للامتداد و كتلته مهملة ، يمر عبر مجرى الاسطوانة و لاينزلق عليها و مرتبط ب S₁ و S₂.

عند اللحظة t=0 نحرر المجموعة فتنتقل وفق المنحى الموجب المحدد في الشكل 1 ونمعلم موضع G_1 في كل لحظة بالأفصول x في المعلم $(0,\vec{t})$ الموازي لحركة S_1 فوق مستوى الأفقى.

- 1. اعتمادا على المنحنى الشكل 2 الذي يمثل تغيرات سرعة الجسم S_1 بدلالة الزمن حدد:
 - ا-1. طبیعة حرکة الجسم S_1 ? درگة
 - التسارع a لحركة الجسم S_1 ؟ -2.
- 2. أكتب المعادلة الزمنية لحركة الجسم $_{1}$ باعتبار أصل التواريخ منطبق مع أصل الأفاصيل؟ $_{2}$ 0،75
- ${f c}$ و ${f g}$ و ${f g}$ و ${f c}$ القوة المقرونة بتأثير الخيط على الجسم ${f S}_2$ بدلالة a_2 تسارع الجسم ${f S}_2$ و ${f m}_2$ و ${f c}$ ${f c}$
 - 4. أوجد تعبير الشدة \mathbf{r}_1 للقوة المقرونة بتأثير الخيط على الجسم \mathbf{s}_1 بدلالة \mathbf{a}_1 تسارع الجسم \mathbf{s}_1 و \mathbf{m}_1 $\mathbf{1}$ ن
 - 5. بتطبيق العلاقة الأساسية للتحريك على الاسطوانة P و من خلال ما سبق بين أن

ئم أحسب
$$J_{\Delta}=\left[m_{2}\left(rac{g.sinlpha}{a_{1}}-1
ight)-m_{1}
ight].$$
 r^{2}

- 6. عند اللحظة ${\bf t_B}={\bf 5s}$ يصل الجسم ${\bf S}_2$ إلى النقطة B فيتقطع الخيط ، ليستمر الجسم ${\bf t_B}={\bf 5s}$ غير يتوقف تحت ثأتير السطح. وتستمر البكرة كذلك في الدوران لتتوقف تحث تأثير ${\bf \mathcal{M}_c}=-{\bf 5.}\,{\bf 10^{-3}}$ عزم مزدوجة الاحتكاك بعد انجازها ل n دورة
 - 6-1. أحسب ë التسارع الزاوي مادا تستنتج ؟ **0،75**
 - 0-75. عند تقطع الخيط يغادر الجسم S_2 السكة بسرعة V_B حدد سرعة الجسم عند هذه النقطة -2-6
 - 0-75. أحسب شغل القوة المقرونة بتأثير السطح على الجسم S_1 ؟
 - يسقط الجسم S_2 عند النقطة C أنظر الشكل 1 حدد احدثيات النقطة C علما أن S_2 عند النقطة C

فرض رقم 2 الدورة الثانية ع ف 1

الفيزياء 2 4،25نقطة دراسة حركة مركز قصور غطاس داخل الماء

نقترح نمذجة حركة مركز قصور غطاس m=70 Kg كانته m=70 Kg داخل الماء. يخضع الغطاس لقوة احتكاك المائع موجهة في المنحى المعاكس للسرعة و شدتها ننمدجها بالعلاقة التالية $f=Kv^2$

m K=150 Kg/m ; حجم الغطاس $m V=6,5.\,10^{-2}m^3$; نعطي $m
m
m
m \rho=10^3 kg/m^3$ الكتلة الحجمية لماء المسبح

- أجرد القوى المطبقة على الغطاس و مثلها في شكل 0,5ن
- 2. بتطبيق القانون الثاني لنيوتن بين أن المعادلة التفاضلية لحركة الغطاس هي.

مع v_z احداثية متجهة السرعة على المحور الموجه نحو الأعلى v_z مع v_z مع المحور الموجه نحو الأعلى

- Bو A و B و النظام العالمي للوحداث وحدة كل من A
 - 4. أحسب قيمة كل من *A* و *B* 0.5
 - ان ? v_l استنتج تعبير السرعة v_l في النظام الدائم ثم احسب 0

الكيمـــــــياء 7نقط

الطلاء بالكهرباء هي تقنية تعتمد على وضع غلاف فلزي على فلز لحمياته من التآكل أو تجعله أكتر صلابة أو لتجميل مظهره . ، حيث يستعمل الفلز المراد طلائه **ككاتود**.

- 1. نصب كمية من برادة الزنك في كأس تحتوي على محلول كبريتات النحاس الثاني (${
 m Cu}^{2+}+{
 m SO}_4^{2-}$) فنلاحظ اختفاء اللون الأزرق المميز لأيونات النحاس ${
 m Cu}^{2+}$ و تكون فلز النحاس ${
 m Cu}$ ، كما نسجل تكون أيونات الزنك
 - 1-1.أكتب نصفي معادلة الأكسدة و الاختزال ثم استنتج معادلة التفاعل الحاصل داخل الكأس **1ن**
- 2-1.ننجز عمودا باستعمال كاسين ، الأول يحتوي عل محلول كبريتات النحاس $(\mathbf{Cu^{2+} + SO_4^{2-}})$ مغمورة فيه صفيحة من النحاس ، و الكأس الثاني يحتوي على محلول كبريتات الزنك $(\mathbf{Zn^{2+} + SO_4^{2-}})$ مغمورة فيه صفيحة

من الزنك حدد الصفيحة التي تكون القطب الموجب لهذا العمود علل جوابك

- 3-1. لطلاء صفيحة من النحاس بطبقة من الزنك هل يكفي غمرها في محلول من كبريتات الزنك؟ علل جوابك. **5،0ن**
- $d=20\mu m$ و حجمها V بطبقة رقيقة من الزنك سمكها r=3cm و حجمها V بطبقة رقيقة من الزنك سمكها r=3cm نغمرها كليا في محلل كهربائي يحتوي على محلول كبريتات الزنك $(Zn^{2+}+SO_4^{2-})$. نضبط توتر المولد على قيمة معينة فيمر في المحلل الكهربائي تيارا كهربائيا شدته I=1A نعطي Zn^{2+}/Zn

 $ho({
m Zn})=7,14g/cm^3$; 1F=96500C/mol ; $M({
m Zn})=65,4g/mol$; $V=rac{4}{3}\pi.\,{
m r}^3$ نعطي

- 2-1. أرسم تبيانة التركيب التجريبي المستعمل لهذه العملية علما أن الالكترود الأخر مكون من البلاتين 75،00
 - - 2-3. أكتب المعادلة الحصيلة لهذا التفاعل 0،75
- م أحسب قيمتها p(Zn) و m(Zn) و n(Zn) ثم أحسب قيمتها n(Zn) عبير n(Zn) كمية مادة اللازمة لهذه العملية بدلالة $n(e^-)$ عمية مادة الالكترونات المتبادلة خلال هذه العملية $n(e^-)$
 - 2-6. حدد المدة الزمنية اللازمة لطلاء الكرية **1**ن