-	القسم : 1-2BACSP الشعبة : علوم تجريبية	ثانویت الرازي التأهیلیت - ترجیست مدیریت الحسیمت	
	السعبه : عنوم تجريبيه المادة: الفيزياء و الكيمياء	الدورة الثانية: 2018/2017	الفرض المحروس رقم 5
	خ. يامين الدران	مدة الإنجاز: 2 h 30 min	تاريخ الإنجاز: 2018/04/30

قوانين نيوتن - الحركات المستوية. الأقمار الاصطناعية و الكواكب. > السقوط الرأسي. > أمثلة لتحولات قسرية.

« يجب إعطاء التعابير الحرفية قبل إنجاز التطبيقات العددية و إرفاق كل نتيجة بوحدتها الملائمة مع احترام عدد الأرقام المعبرة ».

فيزياء 1: الجزءان مستقلان (45 min --- 7,5 pts)

الجزءالأول.

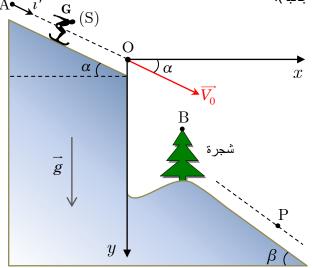
التنقيط

1,00

0,50

0,50

1,00


0,50

0,50

0,25

0,50

هدف هذا الجزء إلى دراسة حركة متزلج على مسارين مختلفين (انظر الشكل جانبه).

• AO دراسة الحركة على المستوى المائل

ندرس G ندرس (S) ندرس ننمذج المتزلج و لوازمه بمجموعة حركة G في المعلم (A,i') المرتبط بمرجع أرضى نعتبره غاليليا. عند اللحظة $\mathbf{t}=0$ ، ينطلق المتزلج من النقطة \mathbf{A} بدون سرعة بدئية فيزلق على مستوى مائل بزاوية $34^{\circ}=34$ بالنسبة للمستوى الأفقى. يتم التماس بين المجموعة (S) و السطح المائل باحتكاك، حيث قوة f = 21 N الاحتكاك ثابتة شدتها

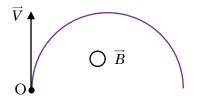
- ، m = 70 kg هي (S) كتلة المجموعة
 - $g = 9.8 \,\mathrm{m.s^{-2}}$
 - نهمل تأثير الهواء.
 - $.AO = 87 \,\mathrm{m}$

$$. rac{d^2x}{dt^2} = g. sin \, lpha - rac{f}{m}$$
 يحققها الأفصول x تكتب على شكل يدوتن، بين أن المعادلة التفاضلية التي يحققها الأفصول x تكتب على شكل x . $x(t) = h.t^2 + k$ على شكل مده المعادلة التفاضلية هو $x(t) = h.t^2 + k$ عدد قيمة الثابتين $x(t) = h.t^2 + k$

- 0,50
- . O استنتج قيمة t لحظة مرور المجموعة من النقطة -3.1
- $m .V_O\!=\!30~m.s^{-1}$ هى O عند النقطة المجموعة عند النقطة -4.1
- . (S) للقوة التي يطبقها المستوى المائل على المجموعة R . 0,50

2 دراسة الحركة في مجال الثقالة المنتظم:

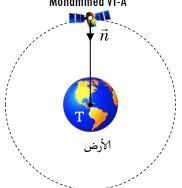
 $\overline{V_O}$ عندما يصل المتزلج إلى النقطة $N_O=30$ أصل المعلم $R(O,ec{i},ec{j})$ ، الذي نعتبره غاليليا، يغادرها بسرعة زاوية $lpha=34^\circ$ مع الخط الأفقى. توجد شجرة في أسفل المنحدر أفصول قمتها $\, \mathrm{B} \,$ ، يمكن لهذه الشجرة أن تشكل عائقا أمام المتزلج، .eta نعتبر لحظة مغادرة المتزلج للنقطة O أصلا جديدا للتواربخ ، و ليكن P موضع G لحظة ملامسة المتزلج للمستوى المائل بزاوبة


- . ${
 m g}=9.8~{
 m m.s^{-2}}$ نهمل جميع الاحتكاكات و نأخذ
- . $y_{\mathrm{B}} = 8~m$ و $x_{\mathrm{B}} = 7~m$: فمة الشجرة، هي $x_{\mathrm{B}} = 7~m$
 - . G و المعادلتين الزمنيتين الزمنيتين عبد المعادلتين الزمنيتين الزمنيتين العبد المعادلتين الزمنيتين الزمنيتين العبد المعادلتين الزمنيتين العبد المعادلتين المعادلتين العبد ال
- . $y = \frac{g}{2(V_0.\cos\alpha)^2} x^2 + x.\tan\alpha$ استنتج أن التعبير الحرفي لمعادلة المساريكتب على شكل -2.2
 - 3.2- تحقق أن المتزلج لا يصطدم بالشجرة. 0,50
 - . $t_{
 m P}\!=\!3\,{
 m s}$ سرعة المتزلج عند النقطة P، علما أن مدة السقوط هي $v_{
 m P}$. 0,50

الجزءالثاني:

 $m .V_O = 3.3.10^5~m.s^{-1}$ حيزا من الفضاء، يعمه مجال مغنطيسي منتظم شدته m B = 1.0~T، بسرعة بدئية $e=1,6.10^{-19}\,\mathrm{C}$ متجهة المجال المغنطيسي \overline{B} عمودية على متجهة السرعة \overline{V} في كل لحظة. (انظر الشكل جانبه) نعطى

- \overrightarrow{B} حدد منحى متجهة المجال المغنطيسى -2
- . بتطبيق القانون الثاني لنيوتن، بين أن حركة الأيون ${
 m Ag}^+$ دائرية منتظمة . 0,75
- . m هو m R=36,6~cm . احسب كتلته Ag $^+$ علما أن شعاع مسار الأيون $m Ag^+$



فيزياء 2: القمر الاصطناعي «محمد السادس-أ» (3,5pts --- 30 min ---

أطلق المغرب القمر الاصطناعي محمد السادس-أ (MOHAMMED VI-A) يوم 8 نونبر 2017 من قاعدة كورو الفرنسية. يستعمل القمر «محمد السادس-أ» لأغراض مدنية و أمنية، كالمسح الخرائطي و الرصد الزراعي و الوقاية من الكوارث الطبيعية و رصد التغيرات البيئية و مراقبة الحدود البرية و البحرية و ضبط التطور العمراني، كما يمنح نوعا من الاستقلالية في المعلومات.

 $h=647\ km$ يدور القمر «محمد السادس-أ» ،ذي الكتلة m ، حول الأرض وفق مدار دائري على ارتفاع

Mohammed VI-A

- \bullet ثابتة التجاذب الكوني: $(SI) = 6,67.10^{-11}$
 - $M_{\rm T} = 5.974.10^{24} \, kg$ كتلة الأرض: \bullet
- lacktriangleدور دوران الأرض حول محورها: $T = 86164\,\mathrm{s}$
 - $R_{\rm T}$ الأرض: km الأرض: \star
 - 🚺 ذكر بالقانون الثاني لكبير. 0,50

معطبات:

1.00

0,50

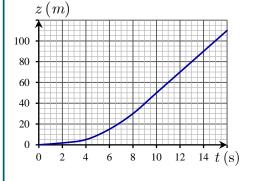
0,75

0,75

1,00

1,00

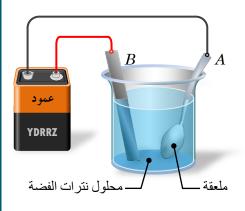
1,00


- ما هو المرجع المناسب لدراسة حركة القمر الاصطناعي «محمد السادس-أ» ؟ 0,25
- أعط التعبير المتجهي لقوة التجاذب الكوني التي تطبقها الأرض على القمر «محمد السادس-أ». 0,50
 - بتطبيق القانون الثانى لنيوتن، بين أن حركة القمر «محمد السادس-أ» دائرية منتظمة.
- . K بين أن القانون الثالث لكيبلر يكتب على شكل K=K بين أن القانون الثالث لكيبلر يكتب على شكل $T_S^2 \left/ \left(R+h
 ight)^3
 ight.$
 - - نحقق أن $T_{\rm S} = 1,63~h$. هل يبدو القمر «محمد السادس-أ» ساكنا بالنسبة للأرض ${f G}$

فيزياء 3: دراسة السقوط الرأسي لقطرة ماء (30 min --- 4pts)

تسقط قطرة ماء كتلتها $m\!=\!33,\!5\,mg$ سقوطا رأسيا من نقطة O بدون سرعة بدئية بالنسبة لمعلم أرضي محوره (O,k) موجه نحو الأسفل. تخضع قطرة الماء أثناء سقوطها إلى قوة مقاومة الهواء، (قوة احتكاك مائع)، شدتها: $f\!=\!\lambda.v$. بحيث λ معامل ثابت موجب. بواسطة عدة تجرببية و معلوماتية متطورة تم الحصول على منحى تغيرات الأنسوب $\,z\,$ بدلالة الزمن.

- $g = 9.8 \ m.s^{-2}$ مجال الثقالة معطيات: \bullet نهمل دافعة أرخميدس.


 - . λ باستعمال التحليل البعدى، حدد وحدة الثابتة λ 0,50
- $\dfrac{dv}{dv} + \dfrac{v}{v} = A$:بين أن المعادلة التفاضلية لحركة القطرة تكتب على الشكل التالي 21,00 . g و λ و m حيث A و m حيث A و σ
 - ${f g}$ استنتج تعبير السرعة الحدية v_{lim} بدلالة m و ${f g}$ 0,50
- ، باستغلال المنحنى $z\!=\!f(t)$ الممثل جانبه، $t\!=\!8\,\mathrm{s}$ الممثل جانبه، $t\!=\!8\,\mathrm{s}$ 0,50 $v_{lim}\!=\!10~m.s^{-1}$ بين أن قيمة السرعة الحدية هي
 - استنتج قيمة كل من الزمن المميز au و الثابتة λ .
- Δt بتطبيق طريقة أولير، احسب قيمة السرعتين v_1 و v_2 على التوالي عند اللحظتين t_1 و t_2 علما أن خطوة الحساب هي t_3 . 0,75

الكيمياء: الطلاء الفلزي (35min --- 5 pts)

من أبرز تطبيقات التحليل الكهربائي عملية الطلاء الكهربائي؛ حيث يتم استخدام التحليل الكهربائي لترسيب طبقة رقيقة من الفلز المراد الطلاء به على المادة المطلوب طلاؤها ؛ لحمايتها من التآكل أو جعلها أكثر صلابة أو إكسابها مظهرا جميلا ...

لطلاء ملعقة حديدية بفلز الفضة، نغمر هذه الملعقة في محلول مائي لنترات الفضة ${
m Ag}^+_{
m (aq)}+{
m NO}^-_{3(aq)}$. حجمه ${
m V}=500~mL$ منجز التحليل الكهربائي لهذا المحلول بين إلكترود مكون من الملعقة الحديدية (A) و إلكترود من الغرافيت (B) .

- . ${
 m O}_{2({
 m g})}/{
 m H}_2{
 m O}_{(\it l)}$ و ${
 m Ag}^+_{({
 m aq})}/{
 m Ag}_{({
 m s})}$: المزدوجتان المتفاعلتان هما
 - $M(Ag) = 108 \ g.mol^{-1}$ الكتلة المولية للفضة:
 - ${
 m .F} = 9{,}65.10^4 \ C.mol^{-1}$ ثابتة فراداي: lacktriangle
 - $V_m = 25,0 \; L.mol^{-1}$: الحجم المولى
 - 1 عرف التحليل الكهربائي. 0,50

معطيات:

- 2 هل يجب أن تكون الملعقة الحديدية هي الأنود أو الكاثود ؟ علل جوابك. 0,50
- 3 اكتب معادلة التفاعل الحاصل عند كل إلكترود و استنتج المعادلة الحصيلة للتحليل. 1,00
- $I = 4,0~\mathrm{A}$ بتيار شدته ثابتة $\Delta t = 20~min$ بتيار شدته ثابتة $\Delta t = 4,0~\mathrm{A}$
 - . Δt التي توضعت على الملعقة خلال المدة ا $m({
 m Ag})$ التي توضعت على الملعقة خلال المدة ا1.4حجم غاز ثنائي الأوكسيجين الناتج خلال مدة التحليل. $V({
 m O}_2)$
- . $[\mathrm{Ag^+}]_{min}$ ولي الأدنى $[\mathrm{Ag^+}]_{min}$ لأيونات الفضة اللازمة لإنجاز هذا التحليل هو: $[\mathrm{Ag^+}]_{min}=0.10~mol.L^{-1}$.