2012/2011 فرض محروس رقم 2 الدورة 1 الأستاذ: صلاح الدين

ث: حعفر الفاسي الفهري الفيزياء النووية و التحولات الغير الكلية 2باك ع ف 5و6

عناصر الإجابة

الكيمياء

1. الجدول الوصفي

		H_3O^+	CH ₃ COO-+	$H_2O \rightarrow$	+	CH₃COOH
	تقدم	كم	ـــيـــات المـــ	ادة بالم		ول
	التفاعل					
ح البدئية	0	0	0		:H₃COOH)	$n_0(C)$
ح الوسطية	x	x	x	× 19 × 1	$n_0 - x$	
ح التوازن	$oldsymbol{x}_{ ext{\'e}q}$	$oldsymbol{x}_{\operatorname{\acute{e}q}}$	$x_{\acute{e}q}$		$n_0 - x_{\acute{e}q}$	

$$n_0 = C_1 * V_1 = 2,7.10^{-4} \text{mol}$$

كمية المادة البدئية لحمض الإيتانويك

2. تركيز أيونات الأوكسونيوم

$$[H_3O^+]=10^{-3.7}=1,99.10^{-4}\mathrm{mol/L}$$
 $x_{\acute{e}q}=[H_3O^+]*V$ on $\mathrm{n}(H_3O^+)=x_{\acute{e}q}$

لدينا
$$[H_3 O^+] = 10^{-pH}$$
 و منه

$$x_{\acute{e}q} = 10^{-pH} * V$$

تقدم التفاعل عند التوازن

$$x_{\text{\'eq}} = 1,99.10^{-4} * 100.10^{-3} = 1,99.10^{-5} mol$$

3. نسبة التقدم النهائي

و
$$\tau = \frac{x_{\text{\'eq}}}{x_{\text{max}}} = \frac{1,99.10^{-5}}{2,7.10^{-4}} = 0,073 < 1$$
 و

نابتة التوازن K_1 ثابتة التوازن.

$$K_1 = rac{[cH_3COO^-]_{
m \acute{e}q}*[H_3O^+]_{
m \acute{e}q}}{[cH_3COOH]_{
m \acute{e}q}}$$
 تعبر عن ثابتة التوازن بالعلاقة التالية $[CH_3COO^-]_{
m \acute{e}q} = [H_3O^+]_{
m \acute{e}q}$ من خلال الجدول الوصفي $[CH_3COOH]_{
m \acute{e}q} = C_1 - [H_3O^+]_{
m \acute{e}q}$ و $[H_3O^+]_{
m \acute{e}q}^2$

$$K_1 = \frac{\left[H_3 o^+ \right]_{\text{\'eq}}^2}{c_1 - \left[H_3 o^+ \right]_{\text{\'eq}}^2}$$

$$[\ H_3 O^+]_{\acute{e}q}$$
 حسب تعریف نسبة التقدم النهائي $au = \frac{[\ H_3 O^+]}{c_1} \ \Rightarrow \ [\ H_3 O^+]_{\acute{e}q} = C_1 * au$ جسب تعریف نسبة التقدم النهائي

$$K_1 = 1,6.10^{-5}$$
 ت ع $K_1 = \frac{c_1 * \tau^2}{1-\tau}$

في تعبير ثابتة التوازن نجد

III. قياس موصلية محلول حمض الإيتانويك

$oldsymbol{\sigma}_{ ext{\'eq}}$. تعبير $oldsymbol{\sigma}_{ ext{\'eq}}$ موصلية المحلول

$$\sigma_{\acute{e}q} = [H_3 O^+]_{\acute{e}q} (\lambda_2 + \lambda_1)$$

2. تعبير نسبة التقدم النهائي:

$$au=0,125$$
 و ت $au=rac{\sigma_{\mathrm{\acute{e}q}}}{c_{2}(\lambda_{1}+\lambda_{2})}$ بالتالي $au=rac{\sigma_{\mathrm{\acute{e}q}}}{c_{2}(\lambda_{1}+\lambda_{2})}$ عن ع $au=rac{\sigma_{\mathrm{\acute{e}q}}}{(\lambda_{2}+\lambda_{1})}$ ت ع $au=rac{\pi_{\mathrm{\acute{e}q}}}{\pi_{\mathrm{max}}}=rac{[H_{3}O^{+}]_{\mathrm{\acute{e}q}}}{c_{1}}$

3. تراكيز المولية الفعلية عند التوازن للأنواع الكيميائية التالية $^+$ $^+$ 0 $^+$ 0 و $^+$ $^+$ 0 و $^+$ 0 $^+$ 0 ?

2012/2011 فرض محروس رقم 2 الدورة 1 الأستاذ: صلاح الدين

ث: جعفر الفاسي الفهري الفيزياء النووية و التحولات الغير الكلية 2باك ع ف5و6

$$[\mathrm{H}_3\mathrm{O}^+]_{\mathrm{\acute{e}q}} = \frac{\sigma_{\mathrm{\acute{e}q}}}{(\lambda_2 + \lambda_1)} = 1,25.10^{-3} \, mol/L \quad [\mathrm{H}_3\mathrm{O}^+]_{\mathrm{\acute{e}q}} = [\mathrm{H}_3\mathrm{O}^+]_{\mathrm{\acute{e}q}} = [\mathrm{H}_3\mathrm{COO}^-]_{\mathrm{\acute{e}q}} = \frac{\sigma_{\mathrm{\acute{e}q}}}{(\lambda_2 + \lambda_1)} = 1,25.10^{-3} \, mol/L$$
 من خلال الجدول الوصفي
$$[\mathit{CH}_3\mathrm{COOH}] = \mathit{C}_2 - [\mathrm{H}_3\mathrm{O}^+]_{\mathrm{\acute{e}q}} = 9,88.10^{-2} \, mol/L$$
 من خلال الجدول الوصفي

بتعبير K_2 ثابتة التوازن: 4

$$K_2 = rac{[cH_3coo^-]_{
m \acute{e}q}*[~H_3o^+]_{
m \acute{e}q}}{[~cH_3cooH]_{
m \acute{e}q}}$$
 نعبر عن ثابتة التوازن بالعلاقة التالية $[CH_3coo^-]_{
m \acute{e}q} = [~H_3O^+]_{
m \acute{e}q}$ من خلال الجدول الوصفي $[CH_3cooH]_{
m \acute{e}q} = C_2 - [~H_3O^+]_{
m \acute{e}q}$ و $K_2 = 1,58.10^{-6}$ ت ع $K_2 = rac{[~H_3o^+]_{
m \acute{e}q}^2}{c_2 - [~H_3o^+]_{
m \acute{e}q}}$

5.الاستنتاج

نلاحظ $K_1 = K_2$ ادن ثابتة التوازن لا تتعلق بالتركيز البدئي للمتفاعلات

الفيـــــزياء النـــوويـة 13نقطة

تمرين 1

- 1. طبيعة النشاط الإشعاعي نوع النشاط الاشعاء والناق
- - 2. معادلة النشاط الإشعاعي $^{60}_{26}Fe$ النواة المتولدة هي نواة الحديد $^{60}_{26}Fe$ النواة المتولدة هي نواة الحديد
 - 3. قانون التناقص الإشعاعي $m(t)=m_0e^{-\lambda t}$ نعلم أن $N=\frac{m_{\rm i}N_A}{M(co)}$ نعلم أن $N(t)=N_0e^{-\lambda t}$
 - $m\left(nt_{1/2}\right)$ عریف و تحدید .4

عمر النصف هي المدة الزمنية اللازمة لتفتت نصف النوى البدئية

$$m\left(nt_{1/2}\right)=m_{0}e^{-nt_{1/2}*\lambda}$$
 النوى المتبقية عند اللحظة $nt_{1/2}$ النحدد كتلة النوى المتبقية عند اللحظة

$$\mathrm{m}\left(\mathrm{nt1}_{/2}\right)=rac{\mathrm{m_0}}{2^n}$$
 و بالتالي $\mathrm{m}\left(\mathrm{nt1}_{/2}\right)=\mathrm{m_0}\mathrm{e}^{-nln2}$ و بالتالي نجد $\mathrm{m}\left(\mathrm{nt1}_{/2}\right)=\mathrm{m_0}\mathrm{e}^{-\lambda\mathrm{n}\frac{ln2}{\lambda}}$ و بالتالي نجد $\mathrm{m}\left(\mathrm{nt1}_{/2}\right)=\mathrm{m_0}\mathrm{e}^{-\lambda\mathrm{n}\frac{ln2}{\lambda}}$

$$t_{1/2} = 5,5$$
من خلال المنحنى نجد: $m\left(t_{1/2}\right) = \frac{m_0}{2} = 1$ س نجد: $n=1$ نجد $n=1$

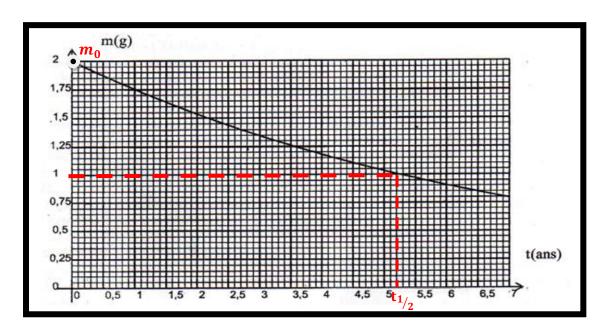
6. تعبير ثابتة النشاط الإشعاعي

$$N\left({
m t1}_{/2}
ight)=rac{N_0}{2}$$
 هو زمن عمر النصف و هو المدة الزمنية اللازمة لتفتت نصف عدد النوى أي $t_{1/2}$ $\lambda=rac{ln2}{t_{1/2}}$ ادن $e^{-\lambda t_{1/2}}=rac{1}{2}$ ادن $e^{-\lambda t_{1/2}}=rac{1}{2}$ ادن التناقص الإشعاعي $e^{-\lambda t_{1/2}}=rac{N_0}{2}$

 $\lambda = 0,126 \, ans^{-1} pprox 4. \, 10^{-9} S^{-1}$ ت ع

7. قيمة الكتلة البدئية من خلال المنحنى نحد: $m_0 = 2 \text{mg}$

8. تعبير النشاط الإشعاعي


$$a_0=rac{m_0*N_A}{ au*M(Co)}$$
 : يعلم أن $n_0=rac{m_0.N_A}{M(co)}$ و $n_0=rac{m_0.N_A}{M(co)}$ نعلم أن $a_0=\lambda*N_0$

الأستاذ: صلاح الدين	فرض محروس رقم 2 الدورة 1	2012/2011
2باك ع ف5و6	الفيزياء النووية و التحولات الغير الكلية	ث: جعفر الفاسي الفهري

$$a_0 = 8,03.10^{12} Bq$$
 ت ع

قيمة عدد النويدات البدئية

$$N_0=2.10^{20} noyau$$
 ومنه $N_0=rac{a_0}{\lambda}$ ومنه $a_0=\lambda*N_0$ لدينا

تمرین 2

1. تعریف

الإنشطار النووي هو تفاعل نووي محرِّض ، تنقسم خلاله نواة ثقيلة شطورة (قابل للإنقسام) بعد قدفها بنوترور حراري (نوترون حراري)

2. تحديد قيمة x و y

y = 6 و x = 3 بتطبيق قانون الإنحفاض نجد

3. طاقة الربط لنويدة الأرانيوم

$$E_1({}^{235}_{92}U) = [92.m_p + 143m_n - m({}^{235}_{92}U)] * C^2$$

 $E_1\binom{235}{92}U = 1783,58Mev$ g c

4. الطاقة الناتجة عن إنشطار نويدة واحدة من الأرانيوم

 $\Delta E = \Delta m * C^2 = \left[m\binom{142}{92}Ce \right) + m\binom{91}{40}Zr \right) + 3m\binom{1}{0}n + 6m\binom{0}{-1}e - m\binom{1}{0}n - m\binom{235}{92}U \right] * C^2$

$$\Delta E = -187,35 Mev$$
 ت ع

الطاقة الناتجة عن إنشطار 1g من الأرانيوم

لدينا $E_T = N\Delta E$ من الارانيوم ادن R ميث N مينا لارانيوم ادن

$$E_T = -4.8.10^{23} \; \text{MeV}$$
 $E_T = \frac{\text{m.N}_A}{\text{M(U)}} \Delta E$

6. الطاقة التي ينتجها المفاعل النووي $E=10^9*3600=36.10^{11}$ لدينا $E=P*\Delta t$