

س رقم

درس : الهندسة الفضائية دراسة تحليلية

إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة لأساس:

10. الأساس و المعلم في الفضاء:

. نشاط:

 $D_2\left(O,\vec{j}
ight)$; $D_1\left(O,\vec{i}
ight)$ انشئ في الفضاء ثلاث متجهات \vec{i} و \vec{i} غير مستوانية انطلاق من نقطة O معلومة ثم أنشئ المستقيمات \vec{i} و \vec{j} و \vec{i} عير مستوانية انطلاق من نقطة O . $D_3\left(O,\vec{k}\right)$ و

2. مفردات:

- المثلوث $(\vec{i}; \vec{j}; \vec{k})$ يسمى أساس في الفضاء.
- . المربوع $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ يسمى معلم في الفضاء .
- . $(O; \vec{i}; \vec{j}; \vec{k})$ منسوب إلى المعلم $(S; \vec{i}; \vec{j}; \vec{k})$ أو أيضا : الفضاء $(S; \vec{i}; \vec{j}; \vec{k})$ منسوب إلى المعلم $(S; \vec{i}; \vec{j}; \vec{k})$.

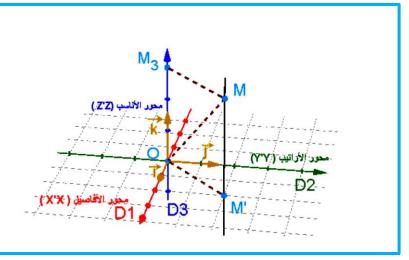
12. إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة لأساس:

1. نشاط:

نعتبر الفضاء (ξ) منسوب إلى معلم (ξ) ن عتبر الفضاء (عنبر الفضاء (ع

. (\vec{j} و المستقيم $\mathbf{O}_3(\mathbf{O},\vec{k})$ و المستوى $\mathbf{P}(\mathbf{O},\vec{i},\vec{j})$ و المستقيم $\mathbf{D}_3(\mathbf{O},\vec{k})$

 $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$: حيث \mathbb{R}^3 من (x,y,z) من الفضاء يوجد مثلوث وحيد



لتكن M نقطة من (٤).

نعتبر النقطتين \mathbf{M}_3 و \mathbf{M}_3 التي تحقق ما يلي : (أنظر الشكل)

- . $Pig(O, \vec{i}, \vec{j}ig)$ المسقط ل M على المستقيم $D_3ig(O, \vec{k}ig)$ بتوازي مع المستوى M_3
 - . $D_3\left(O,\vec{k}
 ight)$ بتوازي مع $P\left(O,\vec{i},\vec{j}
 ight)$ على Mالمسقط ل
 - . ماذا يمكن أن نقول عن استقامية \overrightarrow{k} و \overrightarrow{OM}_3 ثم أعط تعبير متجهي لذلك .
- . \overline{OM} ثم استنتج کتابة ل \overline{i} و \overline{i} و \overline{i} ماذا يمكن أن نقول عن استوائية المتجهات \overline{i} .
 - \overrightarrow{k} من خلال العلاقة : \overrightarrow{OM} + \overrightarrow{OM} = \overrightarrow{OM} استنج كتابة ل \overrightarrow{OM} بدلالة \overrightarrow{i} و \overrightarrow{k} .
- $(\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k} = x'\vec{i} + y'\vec{j} + z'\vec{k}$ نضع \overrightarrow{OM} نضع \overrightarrow{OM} نضع $x = x'\vec{i} + y'\vec{j} + z'\vec{k}$ نبین أن x = x' و y = y' و y = y' و y = y'
 - 5 أعط الخاصية:

الصفحة

2. مفردات:

- . $(O; \vec{i}; \vec{j}; \vec{k})$ العدد X يسمى أفصول النقطة M بالنسبة للمعلم (X
 - العدد y يسمى أرتوب النقطة M بالنسبة للمعلم $(O;\vec{i};\vec{j};\vec{k})$.
- العدد $_{Z}$ يسمى أنسوب النقطة $_{M}$ بالنسبة المعلم $_{Z}$

3. تعریف و خاصیة:

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$
 حيث: \mathbb{R}^3 من (x,y,z) من (x,y,z) عن (x,y,z) من (x,y,z) من (x,y,z) من (x,y,z) من (x,y,z) عن (x,y,z) من (x,y,z) عن (x,y,z) عن (x,y,z) من (x,y,z) عن (x,y,z)

.
$$M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 : يسمى إحداثيات النقطة $M = M(x,y,z)$ بالنسبة للمعلم $M(x,y,z)$. نكتب $M(x,y,z)$ أو أيضا $M(x,y,z)$

.
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 أو أيضا $\vec{u}(x,y,z)$ و نكتب $\vec{u}(x,y,z)$ أو أيضا $\vec{u}(x,y,z)$ أو أيضا $\vec{u}(x,y,z)$

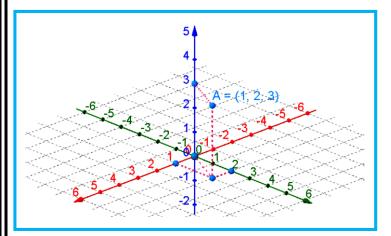
4 كتابة

$$.M(x,y,z) \Leftrightarrow \overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

$$\overrightarrow{OM}(x,y,z) \Leftrightarrow \overrightarrow{OM} = \overrightarrow{xi} + y\overrightarrow{j} + z\overrightarrow{k}$$

5. مثال:

.
$$\overrightarrow{A}$$
 . أنشى: $\overrightarrow{OA} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$. أنشى: $A\left(1,2,3\right)$



إحداثيات $\vec{u} + \vec{v}$ و \vec{AB} و \vec{AB} الجداثيات منتصف قطعة

$$\vec{v}(x',y',z')$$
 , $\vec{u}(x,y,z)$. \mathbb{R} من α . $(O;\vec{i};\vec{j};\vec{k})$ متجهتان من الفضاء (\mathcal{E}) منسوب إلى معلم ((\mathcal{E}) منسوب إلى معلم ((\mathcal{E}) منسوب إلى معلم ((\mathcal{E}) منسوب الفضاء ((\mathcal{E})

لدينا: [AB] منتصف B(a',b',c') ، A(a,b,c) لدينا:

$$\vec{\alpha} \cdot \vec{u} (\alpha \cdot x, \alpha \cdot y, \alpha \cdot z) \ni (\vec{u} + \vec{v}) (x + x', y + y', z + z')$$
 (1

$$\overrightarrow{AB}(a'-a,b'-b,c'-c)$$
 (2

.
$$I\left(\frac{a'+a}{2}, \frac{b'+b}{2}, \frac{c'+c}{2}\right)$$
 (3

جواب :

1) نبين أن:

لدينا:

درس رقم

درس : الهندسة الفضائية دراسة تحليلية

$$\vec{u} + \vec{v} = (\vec{xi} + \vec{yj} + \vec{zk}) + (\vec{x'i} + \vec{y'j} + \vec{z'k})$$

(الجمع في مجموعة المتجهات تبادلي)
$$= x\vec{i} + x'\vec{i} + y\vec{j} + y'\vec{j} + z\vec{k} + z'\vec{k}$$

((درس متجهات الفضاء (درس متجهات الفضاء)
$$=(x+x')\vec{i}+(y+y')\vec{j}+(z+z')\vec{k}$$

$$\cdot (\vec{u} + \vec{v})(x + x', y + y', z + z')$$
 نكتب: $(x + x', y + y', z + z')$ هو المثلوث $\vec{u} + \vec{v}$ هو المثلوث فلاصة : إحداثيات المتجهة

 $\vec{\alpha}.\vec{u}(\alpha.x,\alpha.y,\alpha.z)$: نبین أن

$$\vec{\alpha} \cdot \vec{u} = \alpha \cdot (\vec{x} + \vec{y} + \vec{j} + \vec{z} + \vec{k})$$

(درس متجهات الفضاء)
$$= \alpha(x\vec{i}) + \alpha(y\vec{j}) + \alpha(z\vec{k})$$

((درس متجهات الفضاء و درس متجهات الفضاء)
$$=(\alpha x)\vec{i}+(\alpha y)\vec{j}+(\alpha z)\vec{k}$$

 $\alpha.\vec{u}(\alpha.x,\alpha.y,\alpha.z)$: نكتب ($\alpha.x,\alpha.y,\alpha.z$) هو المثلوث ($\alpha.x,\alpha.y,\alpha.z$) خلاصة المتجهة $\alpha \vec{u}$

2) إحداثيات AB

$$\mathbf{B}(\mathbf{x}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}},\mathbf{z}_{\mathrm{B}})$$
 و $\mathbf{A}(\mathbf{x}_{\mathrm{A}},\mathbf{y}_{\mathrm{A}},\mathbf{z}_{\mathrm{A}})$: نضع

لدينا:

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_B \vec{i} + y_B \vec{j} + z_B \vec{k}) - (x_A \vec{i} + y_A \vec{j} + z_A \vec{k}) = (x_B - x_A) \vec{i} + (y_B - y_A) \vec{j} + (z_B - z_A) \vec{k}$$

$$\overrightarrow{AB}(x_B - x_A, y_B - y_A, z_B - z_A)$$
 : خلاصة

2. مثال:

A(1,2,3) و A(1,2,3)

.
$$\overrightarrow{AB}(-2-1,4-2,5-3) = \overrightarrow{AB}(-3,2,2)$$
 احداثیات

. [AB] منتصف القطعة
$$I\left(\frac{-2+1}{2}, \frac{4+2}{2}, \frac{5+3}{2}\right) = I\left(\frac{-1}{2}, 3, 4\right)$$

$$\vec{\mathbf{w}} \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix} \mathbf{\vec{v}} \begin{pmatrix} 4 \\ 6 \\ -10 \end{pmatrix} \mathbf{\vec{u}} \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix} \bullet$$

$$\vec{u} \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix} + \vec{w} \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix} = (\vec{u} + \vec{w}) \begin{pmatrix} 2+1 \\ 3-2 \\ -5+7 \end{pmatrix} = (\vec{u} + \vec{w}) \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \vec{v} \begin{pmatrix} 4 \\ 6 \\ -10 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix} = 2\vec{u} : \vec{u} :$$

متال 2 :

الفضاء منسوب إلى معلم $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$. لنعتبر المتوازي المستطيلات القائم ABCDEFGH التالي (أنظر الشكل) .

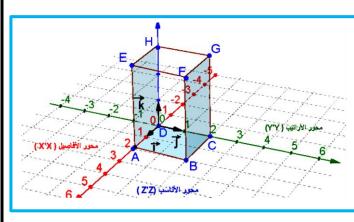
حدد إحداثيات رؤوس المتوازي المستطيلات القائم ABCDEFGH. لدينا:

$$D(0,0,0) \ni C = (0,2,0) \ni B = (2,2,0) \ni A(2,0,0)$$

$$H = (0,0,3)$$
 g $G = (0,2,3)$ g $F = (2,2,3)$ g

ال. محددة ثلاث متجهات:

01. شرط استقامیة متجهتین:



$$v(x',y',z')$$
 متجهتان من الفضاء $v(x',y',z')$, $u(x,y,z)$

 $\vec{v}= \alpha \vec{u}$ و $\vec{u}= \alpha \vec{v}$:من $\vec{u}= \alpha \vec{v}$ أو $\vec{u}= \alpha \vec{v}$

: المحددات التالية $\vec{v}(x',y',z')$ متجهتان من الفضاء (ع) منسوب إلى معلم $\vec{v}(x',y',z')$ المحددات التالية

$$\vec{v}$$
 و \vec{u} و \vec{v} \vec{u} المستخرجة ل \vec{u} المستخرجة ل \vec{u} المستخرجة ل \vec{u} المستخرجة ل \vec{u} و \vec{v} \vec

 $\Delta_{x}=\Delta_{y}=\Delta_{z}=0$ و $\stackrel{
ightarrow}{v}$ مستقیمیتان یکافئ $\stackrel{
ightarrow}{u}$

هل المتجهتان
$$\vec{v} = \vec{v}$$
 مستقيميتان ؟ لدينا $\vec{v} = \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} = -2$ ادن $\vec{v} = \vec{v} = \vec{v}$ ومنه $\vec{v} = \vec{v} = \vec{v} = \vec{v}$

 $\vec{v}(x'',y'',z'')$ و $\vec{v}(x',y,z',z')$ و $\vec{v}(x',y,z,z')$ و $\vec{v}(x',y,z,z')$ و $\vec{v}(x',y,z,z')$

=(xy'z''-xz'y'')+(-yx'z''+yz'x'')+(zx'y''-zy'x'')

يسمى محددة المتجهات \vec{u} و \vec{v} و \vec{w} في هذا الترتيب .

.
$$\overrightarrow{w}(1,0,3)$$
 و $\overrightarrow{v}(-2,0,1)$, $\overrightarrow{u}(1,2,3)$ مع $\det(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ و

.
$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 0 & 0 \\ 3 & 1 & 3 \end{vmatrix} = 1 \begin{vmatrix} 0 & 0 \\ 1 & 3 \end{vmatrix} - 2 \begin{vmatrix} -2 & 1 \\ 1 & 3 \end{vmatrix} + 3 \begin{vmatrix} -2 & 1 \\ 0 & 0 \end{vmatrix} = 1 \times 0 - 2 \times (-7) + 3 \times 0 = 14$$
 .
 Let \vec{u} .

 $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 14$ خلاصة:

03. متجهات مستوائية: 1. خاصية:

. $(O;\vec{i};\vec{j};\vec{k})$ منسوب إلى معلم $\vec{v}(x'',y'',z'')$ و $\vec{v}(x',y',z')$ و $\vec{v}(x',y',z')$ و $\vec{v}(x',y,z')$

.
$$\det(\vec{u}, \vec{v}, \vec{w}) = 0 \Leftrightarrow (\vec{u}, \vec{v}, \vec{w}) = \vec{u}$$
 مستوانية

درس رقم

درس : الهندسة الفضائية دراسة تحليلية

عثال: 2

نأخذ المثال السابق أدرس استوائية \vec{u} و \vec{v} و \vec{v} .

بما أن : $\det (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \neq 0$ إذن $\det (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \neq 0$ و بالتالي \overrightarrow{u} و \overrightarrow{v} غير مستوائية .

خلاصة : \vec{u} و \vec{v} غير مستوائية .

ااا. تمثيل بارامتري لمستقيم:

01. تمثیل بارامتری لمستقیم:

📘 نشاط:

نعتبر الفضاء (\mathcal{E}) منسوب إلى معلم $u(a,b,c).(O;\vec{i};\vec{j};\vec{k})$ متجهة غير منعدمة من $u(a,b,c).(O;\vec{i};\vec{j};\vec{k})$ نقطة من u(a,b,c).

. z_0 و y_0 , x_0 , c, b, a نقطة من (\mathcal{E}) من خلال $\mathbf{M}(x,y,z)\in\mathbf{D}(A,u)$. أوجد تكافئ يكتب $\mathbf{M}(x,y,z)\in\mathbf{D}(A,u)$. و و $\mathbf{M}(x,y,z)$

جواب:

$$M(x,y,z) \in D(A,\vec{u}) \Leftrightarrow \overrightarrow{AM} = t\vec{u}, t \in \mathbb{R} \iff t \in \mathbb{R} / \begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

 $M(x,y,z) \in D(A,\vec{u}) \Leftrightarrow (المتجهتان <math>\overrightarrow{AM}$ و \overrightarrow{u} مستقیمیتان)

$$\Leftrightarrow \exists t \in \mathbb{R} , \overrightarrow{AM} = t\overrightarrow{u}$$

$$\Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

2 مفردات:

 $\mathbf{D}(\mathbf{A}, \overrightarrow{\mathbf{u}})$ الكتابة المحصل عليها تسمى تمثيل بارا متري للمستقيم

3. تعریف:

$$\mathbf{D}\left(\mathbf{A} \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{pmatrix}, \mathbf{u} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}\right)$$
 من الفضاء $\mathbf{D}\left(\mathbf{A} \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{pmatrix}, \mathbf{u} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}\right)$ من الفضاء $\mathbf{D}\left(\mathbf{A} \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{pmatrix}, \mathbf{u} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}\right)$ من الفضاء $\mathbf{D}\left(\mathbf{a} \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{z}_0 \end{pmatrix}, \mathbf{u} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}\right)$

4 ملحوظة

- لكل قيمة للوسيط t يوافق نقطة وحيدة و العكس صحيح . (مثلا k=0 يوافق (أو يمثل) النقطة k)
 - تمثیل بارامتری لمستقیم لیس بوحید (هناك مالانهایة)

<u>.5</u> مثال :

 $\left(0; \vec{i}; \vec{j}; \vec{k}\right)$ معلم منسوب إلى معلم

$$\mathbf{D}ig(\mathbf{A}, \vec{\mathbf{u}}ig): egin{cases} \mathbf{x} = 2t \\ \mathbf{y} = 5 + t \\ \mathbf{z} = -4 - 3t \end{cases}$$
 . $\mathbf{D}ig(\mathbf{A}ig(0, 5, -4ig), \vec{\mathbf{u}}ig(2, 1, -3ig)ig)$. $\mathbf{D}ig(\mathbf{A}ig(0, 5, -4ig), \vec{\mathbf{u}}ig(2, 1, -3ig)ig)$. $\mathbf{D}ig(\mathbf{A}ig(0, 5, -4ig), \vec{\mathbf{u}}ig(2, 1, -3ig)ig)$

D ندرس هل النقطة B(-2,4,-1) تنتمي إلى

لدينا:

درس : الهندسة الفضائية دراسة تحليلية درس رقم

الصفحة

$$B(-2,4,-1) \in D \Leftrightarrow \exists t \in \mathbb{R} \begin{cases} -2 = 2t \\ 4 = 5 + t \\ -1 = -4 - 3t \end{cases} \Leftrightarrow \exists t \in \mathbb{R} \begin{cases} t = \frac{-2}{2} = -1 \\ t = 4 - 5 = -1 \\ 3t = -4 + 1 = -3 \end{cases} \Leftrightarrow t = -1$$

. B $(-2,4,-1) \in D$: خلاصة

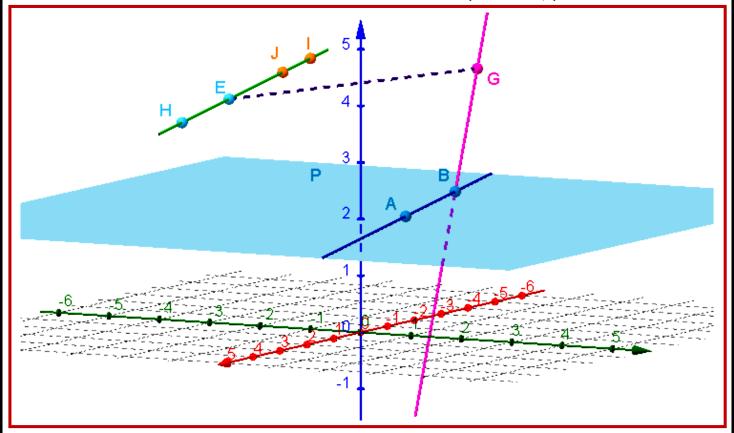
. $P\left(O,\vec{i},\vec{j}\right)$ و المستوى D و تقاطع المستقيم C ددد إحداثيات النقطة

02. الأوضاع النسبية لمستقيمين:

ال نشاط:

 $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ الفضاء منسوب إلى معلم

- 1. من خلال المستقيمات (AB) و (IJ) و (IJ) و (BG) استنتج الأوضاع النسبية الممكنة لمستقيمين في الفضاء .
 - 2. أعط الخاصية لكل حالة (أي الشرط لذلك).



3. مفردات :

- (IJ)/(EH) : ونكتب ((IJ) ونكتب ((IJ) ونكتب ((IJ) ونكتب ((IJ) ونكتب ((IJ) ونكتب ((IJ) والمستقيم ((IJ) ونكتب ((IJ)
 - . (AB)/(EH): نكتب $(AB)\cap(EH)=\emptyset$ متوزيان قطعا إذن(EH) متوزيان قطعا إذن
 - . $(AB)\cap (BG)=\{B\}$: في النقطة (AB) في النقطة (BG)

درس رقم

درس : الهندسة الفضائية دراسة تحليلية

• (BG) و (HE) غير مستوائيين.

2. خاصية:

- . (3) مستقيمان من الفضاء $D'(B, \vec{v})$ و $D(A, \vec{u})$
- \dot{v} و \dot{v} مستقیمیتان و لهما نقطة مشترکة. \dot{v} عنون \dot{v} هنترکة.
- (D) و ('D) متوازیان قطعا $\overrightarrow{u} \Leftrightarrow \overrightarrow{u}$ و \overrightarrow{v} مستقیمیتان و لیس لهما نقطة مشترکة.
 - . $I \in (D') \cap (D)$ و \ddot{v} غير مستقيميتين و $\ddot{u} \Leftrightarrow (D') \cap (D) = \{I\}$
- فير مستوانيين $\stackrel{\cdot}{\Leftrightarrow}$ $\stackrel{\cdot}{\mathrm{u}}$ غير مستوانيين $\stackrel{\cdot}{\Leftrightarrow}$ $\stackrel{\cdot}{\mathrm{u}}$ غير مستقيميتين و ليس لهما نقطة مشتركة.

3. ملحوظة

- $D(A,\vec{u})$ و $D(B,\vec{v})$ غير مستوانيين \vec{u} و \vec{u} غير مستوانية \vec{u}
- $\det(\vec{u}, \vec{v}, \overrightarrow{AB}) \neq 0 \Leftrightarrow$ أو أيضا $D'(B, \vec{v})$ و $D(A, \vec{u})$ غير مستوائيين

<u>4.</u> مثال:

$$\mathbf{D}': t \in \mathbb{R} / \begin{cases} \mathbf{x} = -1 \\ \mathbf{y} = -5 - 2t \end{cases}$$
 هو کالتالي \mathbf{D}' هو \mathbf{D}' متوازيين حيث تمثيل بارا متري ل \mathbf{D}' هو کالتالي \mathbf{D}' و $\mathbf{D}(\mathbf{A}(0,5,-4),\vec{\mathbf{u}}(0,1,2))$

IV. تمثيل بارا متري لمستوى - معادلة ديكارتية لمستوى:

10. تمثیل بارا متری لمستوی:

ا نشاط:

نقطة معلومة من $\vec{v}(a',b',c')$ و $\vec{v}(a',b',c')$ و $\vec{v}(a',b',c')$ نقطة معلومة من الفضاء $\vec{v}(a',b',c')$ و $\vec{v}(a',b',c')$ نقطة معلومة من الفضاء $\vec{v}(a',b',c')$.

- اً ما هو الشرط الضروري و الكافي الذي تحققه النقطة M(x,y,z) لكي تنتمي إلى المستوى $\mathbf{P}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ ؟
- (2, c, b, a, a, v) و $(x, y, z) \in P(A, u, v)$ مستعملا تكافؤات متتالية من أجل كتابة $(x, y, z) \in P(A, u, v)$ مستعملا تكافؤات متتالية من أجل كتابة $(x, y, z) \in P(A, u, v)$ أتمم العبارة التالية : $(x, y, z) \in P(A, u, v)$

جواب :

- 1) الشرط الضروري و الكافي الذي تحققه النقطة M(x,y,z) لكي تنتمي إلى المستوى $P(A,\vec{u},\vec{v})$ هو: المتجهات \vec{u} و \vec{v} و \vec{v} مستوانية .
 - : ستعملا التكافؤات المتتالية $M(x,y,z) \in P(A,u,v)$ مستعملا التكافؤات المتتالية (2 لدينا :

$$\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z}) \in \mathbf{P}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}}) \Leftrightarrow ($$
مستوانية $\overrightarrow{\mathbf{A}} \mathbf{M} \mathbf{y} \mathbf{v} \mathbf{y} \mathbf{u} \mathbf{u} \mathbf{v})$

$$\Leftrightarrow \exists \alpha,\beta \in \mathbb{R} \ ; \ \overrightarrow{\mathbf{A}} \mathbf{M} = \alpha \vec{\mathbf{u}} + \beta \vec{\mathbf{v}}$$

$$\Leftrightarrow \exists \alpha,\beta \in \mathbb{R} \ ; \ \begin{cases} \mathbf{x} = \mathbf{x}_0 + \mathbf{a}\alpha + \mathbf{a}'\beta \\ \mathbf{y} = \mathbf{y}_0 + \mathbf{b}\alpha + \mathbf{b}'\beta \\ \mathbf{z} = \mathbf{z}_0 + \mathbf{c}\alpha + \mathbf{c}'\beta \end{cases}$$

درس رقم

درس : الهندسة الفضائية دراسة تحليلية

.
$$(\mathcal{E})$$
 من الفضاء $\mathbf{P}\left(\mathbf{A}\begin{pmatrix}\mathbf{x}_0\\\mathbf{y}_0\\\mathbf{z}_0\end{pmatrix}, \mathbf{u}\begin{pmatrix}\mathbf{a}\\\mathbf{b}\\\mathbf{c}\end{pmatrix}, \mathbf{v}\begin{pmatrix}\mathbf{a}'\\\mathbf{b}'\\\mathbf{c}'\end{pmatrix}\right)$ من الفضاء $\alpha, \beta \in \mathbb{R}$ / \mathbf{R} من الفضاء $\alpha, \beta \in \mathbb{R}$ / \mathbf{R} $\mathbf{X} = \mathbf{x}_0 + \mathbf{a}\alpha + \mathbf{a}'\beta$ من الفضاء $\mathbf{X} = \mathbf{X}_0 + \mathbf{b}\alpha + \mathbf{b}'\beta$ من الفضاء $\mathbf{X} = \mathbf{X}_0 + \mathbf{b}\alpha + \mathbf{b}'\beta$ من الفضاء $\mathbf{X} = \mathbf{X}_0 + \mathbf{b}\alpha + \mathbf{b}'\beta$ من الفضاء $\mathbf{X} = \mathbf{X}_0 + \mathbf{b}\alpha + \mathbf{b}'\beta$

3. ملحوظة

- (A النقطة α يوافق (أو يمثل) النقطة وحيدة و العكس صحيح . (مثلا $\alpha=0$ و $\alpha=0$ يوافق (أو يمثل) النقطة α
 - تمثیل بارامتری لمستوی لیس بوحید (هناك ما لانهایة).
 - $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ مثال : الفضاء $\left(\mathcal{E}\right)$ منسوب إلى معلم 4

$$P\left(A,\overrightarrow{u},\overrightarrow{v}\right): \begin{cases} x=1+3\alpha+2\beta \\ y=-2+5\alpha-4\beta \\ z=7+9\beta \end{cases}; \; \alpha,\beta \in \mathbb{R} \; : \; \text{a.} \; P\left(A\begin{pmatrix}1\\-2\\7\end{pmatrix},\overrightarrow{u}\begin{pmatrix}3\\5\\0\end{pmatrix},\overrightarrow{v}\begin{pmatrix}2\\-4\\9\end{pmatrix}\right)$$

• ندرس هل النقطة $P(A,\vec{u},\vec{v})$ تنتمي إلى $P(A,\vec{u},\vec{v})$ لدينا :

$$B\left(5,12,-2\right)\in D\Leftrightarrow\exists\alpha,\beta\in\mathbb{R}\,/\begin{cases} 5=1+3\alpha+2\beta\\ 12=-2+5\alpha-4\beta\Leftrightarrow\exists\alpha,\beta\in\mathbb{R}\,/\begin{cases} 5=1+3\alpha+2\beta\\ 12=-2+5\alpha-4\beta\\ -9=9\beta\end{cases}\\ \Leftrightarrow\exists\alpha,\beta\in\mathbb{R}\,/\begin{cases} 5=1+3\alpha-2\\ 12=-2+5\alpha+4\Leftrightarrow\exists\alpha,\beta\in\mathbb{R}\,/\begin{cases} \alpha=2\\ \alpha=2\\ \beta=-1\end{cases}\end{cases}$$

. $B(5,12,-2) \in D$: خلاصة

_02 معادلة ديكارتية لمستوى:

$$P\left(egin{array}{c} X_0 \\ Y_0 \\ Z_0 \end{array}
ight), \overrightarrow{u}\left(egin{array}{c} a'' \\ b'' \\ c' \end{array}
ight), \overrightarrow{v}\left(egin{array}{c} a'' \\ b'' \\ c'' \end{array}
ight)$$
 كي تنتمي إلى المستوى $M(x,y,z)$ الكي تنتمي الى المستوى $M(x,y,z)$ المستوى المستوى

 $d = -x_0 \Delta_x + y_0 \Delta_y - z_0 \Delta_z$ و $c = \Delta_z = a'b'' - b'a''$ و $b = \Delta_y = a'c'' - c'a''$ و $a = \Delta_x = b'c'' - c'b''$:

جواب: نعم هناك طريقة أخرى:

$$\begin{split} \mathbf{M} \big(\mathbf{x}, \mathbf{y}, \mathbf{z} \big) &\in \mathbf{P} \Big(\mathbf{A}, \mathbf{u}, \mathbf{v} \big) \Leftrightarrow (\overrightarrow{\mathbf{A}}, \mathbf{u}, \mathbf{v}) = \mathbf{0} \\ &\Leftrightarrow \det \Big(\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{M}}, \mathbf{u}, \mathbf{v} \big) = \mathbf{0} \\ &\Leftrightarrow \begin{vmatrix} \mathbf{x} - \mathbf{x}_0 & \mathbf{a}' & \mathbf{a}'' \\ \mathbf{y} - \mathbf{y}_0 & \mathbf{b}' & \mathbf{b}'' \\ \mathbf{z} - \mathbf{z}_0 & \mathbf{c}' & \mathbf{c}'' \end{vmatrix} = \mathbf{0} \\ &\Leftrightarrow \left(\mathbf{x} - \mathbf{x}_0 \right) \begin{vmatrix} \mathbf{b}' & \mathbf{b}'' \\ \mathbf{c}' & \mathbf{c}'' \end{vmatrix} - \left(\mathbf{y} - \mathbf{y}_0 \right) \begin{vmatrix} \mathbf{a}' & \mathbf{a}'' \\ \mathbf{c}' & \mathbf{c}'' \end{vmatrix} + \left(\mathbf{z} - \mathbf{z}_0 \right) \begin{vmatrix} \mathbf{a}' & \mathbf{a}'' \\ \mathbf{b}' & \mathbf{b}'' \end{vmatrix} = \mathbf{0} \\ &\Leftrightarrow \mathbf{x} \Delta_{\mathbf{x}} - \mathbf{y} \Delta_{\mathbf{y}} + \mathbf{z} \Delta_{\mathbf{z}} + \left(-\mathbf{x}_0 \Delta_{\mathbf{x}} + \mathbf{y}_0 \Delta_{\mathbf{y}} - \mathbf{z}_0 \Delta_{\mathbf{z}} \right) = \mathbf{0} \\ &\Leftrightarrow \mathbf{a} \mathbf{x} + \mathbf{b} \Delta_{\mathbf{y}} + \mathbf{c} \Delta_{\mathbf{z}} + \mathbf{d} = \mathbf{0} \end{split}$$

درس: الهندسة الفضائية دراسة تحليلية درس رق

. ${f P}ig(A, \stackrel{
ightarrow}{u}, \stackrel{
ightarrow}{v}ig)$ تسمى معادلة ديكارتية للمستوى ${f ax}+b\Delta_y+c\Delta_z+d=0$.

3. تعریف وخاصیة:

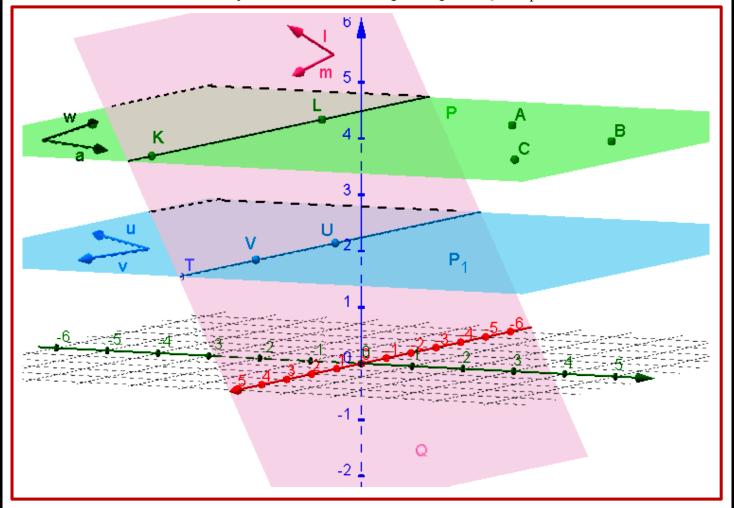
نقطة $A(x_0,y_0,z_0)$ و O; i; j; k و u(a,b,c) متجهتان غير مستقيمتين من الفضاء v(a',b',c') و u(a,b,c) نقطة v(a',b',c') و v(a',b',c') معلومة من الفضاء v(a',b',c') . لدينا :

المعادلة : $\mathbf{P}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ مع $\Delta_{\mathbf{x}}$ و $\Delta_{\mathbf{y}}$ مع $\Delta_{\mathbf{x}}$ و $\Delta_{\mathbf{y}}$ المعادلة : $\mathbf{P}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ مع $\Delta_{\mathbf{x}}$ و $\Delta_{\mathbf{x}}$ هي المعادلة : $\mathbf{P}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ مع $\Delta_{\mathbf{x}}$ و $\Delta_{\mathbf{x}}$ هي المعادلة : $\mathbf{P}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ مع $\Delta_{\mathbf{x}}$ و $\Delta_{\mathbf{x}}$ المحددات المستخرجة ل

 $(a,b,c)\neq (0,0,0)$ و \mathbb{R} مع \mathbf{a} و \mathbf{b} و \mathbf{a} و \mathbf{b} مع \mathbf{a} و \mathbf{b} عن \mathbf{c} و \mathbf{a} و هذه المعادلة تكتب باختصار: $\mathbf{a}\mathbf{x}+\mathbf{b}\mathbf{y}+\mathbf{c}\mathbf{z}+\mathbf{d}=\mathbf{0}$

4. ملحوظة

- ه المحددات المستخرجة $\Delta_{\rm x} = \begin{vmatrix} a' & a'' \\ b' & b'' \end{vmatrix}$ و $\Delta_{\rm y} = \begin{vmatrix} a' & a'' \\ c' & c'' \end{vmatrix}$ و $\Delta_{\rm x} = \begin{vmatrix} b' & b'' \\ c' & c'' \end{vmatrix}$ على الأقل واحدة منها غير منعدمة .
- $P(A, \vec{u}, \vec{v})$: ax + by + cz + d = 0 : الأعداد a و a و a على الأقل واحدة منها غير منعدمة في المعادلة الديكارتية
 - 03. الأوضاع النسبية لمستويين:
 - نشاط: الفضاء منسوب إلى معلم $(O; \vec{i}; \vec{j}; \vec{k})$.
- 1. من خلال المستويات P_1 و P_1 و P_1 استنتج الأوضاع النسبية الممكنة لمستويين في الفضاء . أعط الخاصية لكل حالة .



درس: الهندسة الفضائية دراسة تحليلية درس رق

مقددات

- $(P') \parallel (P)$ منطبقان إذن : (ABC) = (P) كذلك نقول إن : $(P) \oplus (ABC)$ متوازيان ونكتب : $(P) \oplus (P)$
 - . $(P') \parallel (P)$: نكتب $(P_1) \cap (P) = \emptyset$ نكتب و $(P_1) \cap (P_1) = \emptyset$ نكتب .
 - $(P')\cap(P)=(KL)$: نكتب (KL) تبعا للمستقيم (Q) يقطع (P) •

2. خاصية

. (ع) مستويان من الفضاء (P') : a'x+b'y+c'z+d'=0 و (P) : ax+by+cz+d=0

- . $k \neq 0$ و d' = kd و c' = kc و b' = kb و $a' = ka \Leftrightarrow \left(\left(P' \right) = \left(P \right) \right)$ و $\left(P' \right) = \left(P \right)$
- $\mathbf{d'} \neq \mathbf{kd}$ و $\mathbf{c'} = \mathbf{kc}$ و $\mathbf{b'} = \mathbf{kb}$ و $\mathbf{a'} = \mathbf{ka} \Leftrightarrow \left((\mathbf{P'}) \cap (\mathbf{P}) = \emptyset \right)$ متوازیان قطعا
- و $\vec{\mathrm{v}}(\mathrm{a'},\mathrm{b'},\mathrm{c'})$ و $\vec{\mathrm{v}}(\mathrm{a'},\mathrm{b'},\mathrm{c'})$ و $\vec{\mathrm{v}}(\mathrm{a,b,c})$ \Leftrightarrow $((\mathrm{P'}) \cap (\mathrm{P}) = (\mathrm{D}))$ غير مستقيميتين.

3. ملحوظة:

- $(a',b',c') \neq (0,0,0)$ و $(a,b,c) \neq (0,0,0)$: مع المعلم أن
- و \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{u} مستوانية و كذلك \overrightarrow{u} و \overrightarrow{v} مستوانية . $P(B,\overrightarrow{u'},\overrightarrow{v'})$ و $P(A,\overrightarrow{u},\overrightarrow{v})$
- أو أيضًا : $P(\vec{u},\vec{v},\vec{v'}) \neq 0$ و $P(\vec{u},\vec{v},\vec{v'}) \neq 0$ متقاطعان يكافئ $P(\vec{u},\vec{v},\vec{u'}) \neq 0$ أو أيضًا : $P(\vec{u},\vec{v},\vec{v'}) \neq 0$ متقاطعان يكافئ على الأقل إحداهما و المحالم المح

: مثال 🚣

V. معادلتان ديكارتيتان لمستقيم:

معادلتان دیکارتیتان لمستقیم:

- 1 نشاط: من خلال التمثيل بارا متري لمستقيم.
- \mathbf{z}_0 , \mathbf{y}_0 , \mathbf{x}_0 , \mathbf{c} , \mathbf{b} , \mathbf{a} بدلالة \mathbf{a} بناخذ \mathbf{a} و \mathbf{a} و \mathbf{b} و عير منعدمة أوجد قيمة \mathbf{t}
- \mathbf{z}_0 , \mathbf{y}_0 , \mathbf{c} , \mathbf{b} بدلالة \mathbf{a} بدلالة \mathbf{c} و \mathbf{b} و \mathbf{a} ناخذ \mathbf{a} و \mathbf{b}

2. مفردات

 $\mathbf{D}(\mathbf{A}, \overrightarrow{\mathbf{u}})$ المعادلتين تسمى معادلتين ديكارتيتين للمستقيم

3. تعریف و خاصیة:

 $A(x_0,y_0,z_0)$ و u(a,b,c) مستقيم من الفضاء D(A,u) مع D(A,u)

$$D\left(A,\overrightarrow{u}
ight)$$
 مع $t\in\mathbb{R}$ / $\begin{cases} x=x_0+at \\ y=y_0+bt \end{cases}$ مع $z=z_0+ct$

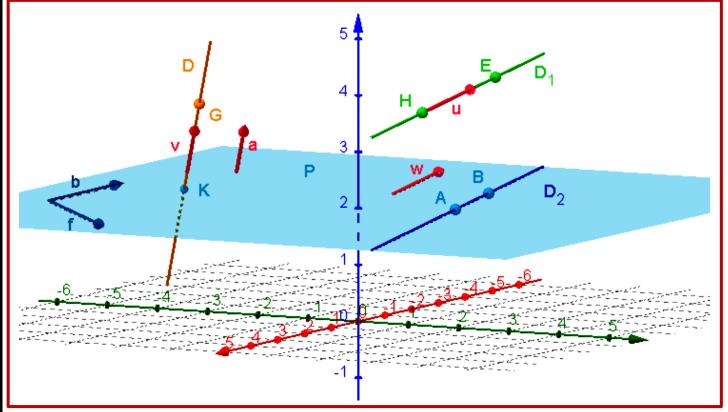
- $M(x,y,z) \in D(A,u) \Leftrightarrow \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$: فير منعدمة a
- . $\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z}) \in \mathbf{D}(\mathbf{A},\mathbf{u}) \Leftrightarrow \mathbf{x} = \mathbf{x}_0$ و \mathbf{b} و \mathbf{c} و \mathbf{b} و ما و على الأقل منعدم مثلا \mathbf{c} و \mathbf{b} و ما و على الأقل منعدم مثلا
- . $D(A,\vec{u})$ أو أيضا نظمة معادلتين ديكارتيتين للمستقيم أو $D(A,\vec{u})$ أو أيضا نظمة معادلتين ديكارتيتين المستقيم أو الكتابة السابقة تسمى معادلتين ديكارتيتين المستقيم

درس : الهندسة الفضائية دراسة تحليلية

02. الأوضاع النسبية لمستقيم و مستوى:

[. نشاط

- 1. ما هي الأوضاع النسبية للمستقيم $\mathbf{p}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ و المستوى $\mathbf{p}(\mathbf{A},\vec{\mathbf{u}},\vec{\mathbf{v}})$ من الفضاء ؟
 - 2. أعط الخاصية لكل حالة.



2. مفردات:

- . $(D_2)\cap(P)=(D_2)$: فمن $(D_2)\subset(P)$ ومنه (D_2)
- $(D_1)\cap (P)=\emptyset$: خارج $(D_1)/(P)$ ونكتب $(D_1)/(P)$ ومنه (D_1)
 - $(D)\cap(P)=\{K\}$: ومنه (P) في النقطة $(D)\cap(P)=\{K\}$

2. خاصية:

$$\mathbf{P}(\mathbf{A}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$$
 و $\mathbf{P}(\mathbf{A}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$ مستقيم من الفضاء (ع).

- $(\mathbf{B}\in (\mathbf{P})$ و $\mathbf{det}(\mathbf{u},\mathbf{v},\mathbf{w})=0$ (أو أيضا $\mathbf{B}\in (\mathbf{P})$ و \mathbf{u} مستوائية و \mathbf{u} ف \mathbf{u}
- $(\mathbf{B} \not\in (\mathbf{P})$ و $\det(\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}) = 0$ ف $\det(\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}) = 0$
 - $(\det(\vec{u},\vec{v},\vec{w})
 eq 0$ يكافئ المتجهات \vec{u} و \vec{v} غير مستوانية . (أو أيضا (P) يكافئ المتجهات \vec{u}

- . (P) بالنسبة ل (D) خارج (P) يجب نقطة من (D) لا تنتمي إلى
- اما نقطة من $egin{pmatrix} \mathbf{P} \end{pmatrix}$ لا يعني بالمرورة أن $egin{pmatrix} \mathbf{D} \end{pmatrix}$ خارج $egin{pmatrix} \mathbf{P} \end{pmatrix}$ يمكن أن يكون $egin{pmatrix} \mathbf{D} \end{pmatrix}$ ضمن