Suites et séries de fonctions.

Exercices 2017-2018

Niveau 1.

Convergence simple et uniforme de suites de fonctions.

- 1. Etudier la convergence simple des suites de fonctions suivantes sur l'intervalle proposé, puis la convergence uniforme de ces suites sur tout segment inclus dans l'intervalle proposé :
 - a. $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, u_n(x) = \frac{n \cdot x^3}{1 + n^2 \cdot x^2},$
 - b. $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}^+, u_n(x) = \ln\left(1 + \frac{x}{n}\right),$
 - c. $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}^+, u_n(x) = e^{-n.x}.\sin(n.\alpha.x)$, avec : $\alpha \in \mathbb{R}$.
- 2. a. Montrer que la suite de fonctions (u_n) définies par : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, u_n(x) = \frac{1}{1 + (x + n)^2}$, converge simplement sur \mathbb{R} vers une fonction que l'on précisera (et que l'on notera u dans la suite).
 - b. Montrer que (u_n) ne converge pas uniformément sur \mathbb{R} .
 - c. Sur quelle famille d'intervalles, autres que des segments, y a-t-il convergence uniforme ?
- 3. Soit la suite de fonctions (f_n) définies par : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = x^2 e^{-\sin\left(\frac{x}{n}\right)}$.
 - a. Montrer que cette suite converge simplement sur $\mathbb R$ vers une fonction f .
 - b. Montrer que pour tout entier : $n \ge 1$, $f_n f$ est non bornée sur \mathbb{R} ; qu'en déduit-on ?
 - c. Pour : a > 0, montrer la convergence uniforme de (f_n) vers f sur [-a,+a].
- 4. a. Montrer la convergence simple de la suite de fonctions définie par :

$$\forall n \ge 1, \forall x \in \mathbb{R}^+, u_n(x) = \sin(\sqrt{x + 4.\pi^2.n^2}) - \frac{x}{4.n.\pi}.$$

- b. Montrer que la suite ne converge pas uniformément sur \mathbb{R}^+ , mais sur tout segment [0,a] inclus dans \mathbb{R}^+ .
- 5. Pour : $n \ge 1$, soit u_n de \mathbb{R}^+ dans \mathbb{R} définie par : $\forall x \ge 0$, $u_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$.
 - a. Montrer que : $\forall t \in \mathbb{R}^+, \ t \frac{t^2}{2} \le \ln(1+t) \le t$.
 - b. Etudier la limite simple de (u_n) sur \mathbb{R}^+ et montrer que : $\forall x \ge 0$, $\forall n \in \mathbb{N}$, $u_n(x) \ge \lim_{p \to +\infty} u_p(x) = u(x)$.
 - c. Montrer que (u_n) converge uniformément vers u sur [0,a] pour tout : a>0 .
 - d. (*) Etablir qu'en fait, la suite de fonctions (u_n) converge uniformément sur \mathbb{R}^+ . On pourra penser à couper l'intervalle \mathbb{R}^+ en la valeur $\sqrt[4]{n}$.
- 6. On considère les suites de fonctions (u_n) et (v_n) définies par :
 - $\forall n \in \mathbb{N}, \forall x \in \left[0, \frac{\pi}{2}\right], u_n(x) = \cos^n(x).\sin(x),$
 - $\forall n \in \mathbb{N}, v_n = (n+1).u_n$.
 - a. Etudier les différentes convergences de la suite (u_n) .
 - b. Calculer pour tout entier : $n \in \mathbb{N}$, l'intégrale $\int_0^{\frac{\pi}{2}} v_n(t).dt$.

- c. Etudier les différentes convergences de la suite (v_n) sur $\left[0, \frac{\pi}{2}\right]$.
- 7. Soit la suite de fonctions définies sur [0,1] par :

$$\forall n \in \mathbb{N}^*, \forall x \in [0,1], u_n(x) = n.x.(1-n.x), \text{ si } : 0 \le x < \frac{1}{n}, \text{ et 0 sinon.}$$

- a. Montrer que la suite converge simplement sur [0,1] en précisant sa limite simple.
- b. Calculer, pour : $n \in \mathbb{N}^*$, $\int_0^1 u_n(t) dt$, et en déduire si la suite converge uniformément sur [0,1].
- c. Etudier la convergence uniforme de la suite sur [a,1], pour : 0 < a < 1.
- 8. Soit la suite de fonctions définies sur [-1,+1] par : $\forall n \ge 1, \forall x \in [-1,+1], u_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$.
 - a. Etudier la convergence simple et uniforme de cette suite sur [-1,+1]: on notera u sa limite.
 - b. Les fonctions u_n sont-elles C¹ sur [-1,+1] pour tout entier : $n \ge 1$? La fonction u est-t-elle de classe C¹ sur [-1,+1] ?
 - c. Que peut-on en conclure ?

Convergence simple, uniforme ou normale de séries de fonctions.

- 9. Etudier la convergence simple des séries $\sum u_n$ de fonctions définies ci-dessous, puis une fois déterminé l'ensemble D sur lequel la série converge simplement, étudier sa convergence normale sur les ensembles proposés.
 - a. $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, u_n(x) = \frac{e^{n.x}}{n^2 n + 1}$, et convergence normale sur D.
 - b. $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}^+, u_n(x) = \frac{\ln(n+x)}{n^2+x^2}$, et convergence normale sur tout segment inclus dans D.
 - c. $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, u_n(x) = x.e^{-n.x^2}$, et convergence normale sur D puis sur tout segment inclus dans D.
 - d. $\forall n \in \mathbb{N}, \forall x \in [0,1], u_n(x) = \frac{x^n}{1+n.x}$, et convergence normale sur D puis sur tout segment : $[0,a] \subset D$.
- 10. On considère la série de fonctions $\sum_{n\geq 1} u_n$, où : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = \frac{(-1)^n}{x^2 + n}$.
 - a. Montrer que cette série de fonctions converge simplement et uniformément sur R.
 - b. Montrer que cette série de fonctions ne converge normalement sur aucun intervalle de R.

Propriétés d'une somme de série de fonctions.

- 11. a. Déterminer l'ensemble de définition et la continuité de la fonction réelle : $f(x) = \sum_{n=0}^{+\infty} \frac{\cos(n\pi x)}{n^3 + 1}$.
 - b. Montrer par ailleurs que la fonction f est paire.
 - c. Montrer que f est périodique en précisant une période de f .
- 12. Soit f donnée par : $\forall x \in \mathbb{R}, f(x) = \sum_{n=0}^{+\infty} \frac{\sin(3^n \cdot x)}{3^n}$.
 - a. Montrer que f est définie et continue sur \mathbb{R} .
 - b. Trouver une relation entre f(x) et f(3.x) et en déduire que f n'est pas dérivable en 0.
- 13. Soit (a,) une suite réelle (ou complexe) bornée.

Montrer que la fonction f donnée par : $\forall x \in \mathbb{R}^{+*}$, $f(x) = \sum_{n=0}^{+\infty} a_n . e^{-n.x}$, est définie et de classe \mathbb{C}^1 sur \mathbb{R}^{+*} .

- 14. On note : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, u_n(x) = \frac{\cos^3(n.x)}{n!}, v_n(x) = \frac{\cos(n.x)}{n!}$
 - a. Montrer que la série de fonctions $\sum u_n$ converge uniformément sur $\mathbb R$; on notera S sa somme.
 - b. Etudier de même la série $\sum v_n$, dont on notera la somme σ .
 - c. Montrer que σ est continue et de classe C^1 sur \mathbb{R} , puis par récurrence qu'elle est de classe C^{∞} sur \mathbb{R} .
 - d. Etablir une relation, pour : $x \in \mathbb{R}$, entre $u_n(x)$ et $v_n(x)$ et en déduire une relation entre S(x) et $\sigma(x)$.
 - e. En déduire que S est de classe \mathbb{C}^{∞} sur \mathbb{R} .

Etude de sommes de séries de fonctions (limite en un point, tracé de courbes...).

15. Soit (a_n) une suite réelle (ou complexe) telle que $\sum_{n>0} a_n$ soit absolument convergente.

On note :
$$\forall t \in \mathbb{R}, \ S(t) = \sum_{n=0}^{+\infty} a_n . e^{i.n.t}$$
.

- a. Montrer que S est définie et continue sur \mathbb{R} .
- b. Calculer: $I_p = \int_0^{2\pi} S(t) . e^{-i.p.t} . dt$, pour tout entier: $p \in \mathbb{N}$.
- 16. Pour : $n \in \mathbb{Z}$, on note : $I_n = \int_0^{2\pi} \frac{e^{i.n.\theta}}{2 + e^{i.\theta}} .d\theta$.
 - a. Montrer que la fonction sous l'intégrale est continue sur $[0,2.\pi]$ et peut s'écrire comme la somme d'une série de fonctions que l'on précisera.
 - b. Montrer la convergence normale de cette série de fonctions sur $[0,2.\pi]$.
 - c. En déduire la valeur de $I_n I_n$, pour tout entier : $n \in \mathbb{Z}$.
- 17. On pose : $\forall x \ge 0$, $f(x) = \sum_{n=0}^{+\infty} \frac{1}{1+x^n}$.
 - a. Montrer que : $\mathcal{Q}_f =]1,+\infty)$.
 - b. Montrer que $\,f\,$ est continue sur $\mathscr{Q}_{\,f}\,$
 - c. Montrer que : $\lim_{x \to 1^+} f(x) = +\infty$.
- 18. On pose, pour : $x \in \mathbb{R}$, $S(x) = \sum_{n=1}^{+\infty} \frac{x}{n \cdot (1 + n \cdot x^2)}$.
 - a. A l'aide de l'étude de la convergence simple d'une série de fonctions, montrer que le domaine de définition de S est \mathbb{R} .
 - b. Montrer que S est impaire, et que : S(1) = 1.
 - c. Montrer que S est de classe C^1 sur \mathbb{R}^* , et préciser sa dérivée.
 - d. Montrer que S tend vers 0 en $+\infty$.
 - e. Montrer que : $\forall x > 0, \forall N \in \mathbb{N}^*, \sum_{n=1}^N \frac{1}{n.(1+n.x^2)} \le \sum_{n=1}^{+\infty} \frac{1}{n.(1+n.x^2)}$.
 - f. Déduire de l'inégalité précédente que S ne peut être dérivable en 0, et que sa courbe présente une tangente verticale en 0.
 - g. Donner (approximativement) l'allure de la courbe représentative de S .
- 19. On pose : $\forall x \in \mathbb{R}^+$, $S(x) = \sum_{n=1}^{+\infty} \frac{n \cdot x^{n-1}}{1 + x^n}$.
 - a. Pour quels réels positifs, S(x) est-il défini?
 - b. En minorant S(x) par des sommes partielles, montrer que : $\lim_{\substack{x \to 1 \\ <}} S(x) = +\infty$.

- 20. On pose : $\forall x \in \mathbb{R}, S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n} e^{-x\sqrt{n}}$.
 - a. Donner le domaine de définition de S .
 - b. En utilisant un argument de convergence uniforme, montrer que S est de classe C^1 sur \mathbb{R}^+ .
 - c. Tracer l'allure de la courbe représentative de S .
- 21. On pose : $\forall x \in \mathbb{R}, S(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.
 - a. Donner le domaine de définition D de S .
 - b. Etudier la continuité de S sur D puis montrer qu'elle y est décroissante.
 - c. Déterminer la limite de S en $+\infty$.
 - d. Déterminer un équivalent simple de S(x) en 0^+ à l'aide d'une comparaison série-intégrale.
- 22. On définit la suite de fonctions (u_n) par :
 - $\forall x \in [0,1], u_0(x) = 1,$
 - $\forall n \ge 0, \forall x \in [0,1], u_{n+1}(x) = \int_0^x u_n(t-t^2).dt$.
 - a. Montrer que la suite est bien définie et que : $\forall n \in \mathbb{N}, \sup_{[0,\frac{1}{4}]} |u_n| \leq \frac{1}{4^n}$.
 - b. En déduire que la série de fonctions $\sum_{n\geq 0} u_n$ converge normalement sur [0,1].

Fonction ζ de Riemann.

- 23. On note pour x réel : $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.
 - a. Déterminer le domaine de définition de ζ .
 - b. Montrer que ζ est de classe C^{∞} sur son domaine de définition.
 - c. Montrer que la dérivée seconde de ζ est positive.
 - d. Montrer que la courbe représentative de ζ présente deux asymptotes que l'on précisera.
 - e. Tracer l'allure de sa courbe représentative.

Niveau 2.

Convergence simple et uniforme de suites de fonctions.

- 24. Etudier si la convergence simple des suites de fonctions de fonctions suivantes, puis déterminer des intervalles sur lesquels il y a convergence uniforme :
 - a. $\forall n \in \mathbb{N}^*, \forall x \in [0,1], u_n(x) = \frac{x^n 1}{x^n + 1}$
 - b. $\forall n \in \mathbb{N}^*, \forall x \in [0,1], \begin{cases} u_n(x) = n.x^n. \ln(x), & si: x \neq 0 \\ u_n(0) = 0 \end{cases}$
 - c. $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, u_n(x) = \arctan(n.x)$.
- 25. Soit : $\alpha \in \mathbb{R}$, et la suite de fonctions définie sur [0,1] par :

$$\begin{cases} u_n(x) = (n+1)^{\alpha} \cdot \left(\frac{x}{n+1} - x^2\right), & si: 0 \le x \le \frac{1}{n+1} \\ u_n(x) = 0, & si: \frac{1}{n+1} \le x \le 1 \end{cases}$$

Etudier la convergence simple et uniforme de cette suite sur [0,1].

26. Pour : $n \in \mathbb{N}^*$, soit f_n la fonction définie sur \mathbb{R}^+ par :

•
$$f_n(x) = \left(1 - \frac{x}{n}\right)^n$$
, pour : $0 \le x < n$, et :

- $f_n(x) = 0$, sinon.
- a. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction à préciser.
- b. Montrer que la convergence est uniforme sur R⁺.
- 27. Soit f une fonction définie et de classe C^1 de [0,1] dans \mathbb{R} .

Pour:
$$n \ge 1$$
, on pose: $\forall x \in [0,1]$, $f_n(x) = f\left(x + \frac{x \cdot (1-x)}{n}\right)$.

- a. Montrer que les fonctions f_n sont correctement définies pour tout entier : $n \ge 1$.
- b. Montrer que la suite (f_n) converge uniformément sur [0,1] vers une fonction à préciser.
- 28. Soient f une fonction continue de \mathbb{R} dans \mathbb{R} et (P_n) une suite de fonctions polynomiales convergeant uniformément vers f sur \mathbb{R} .
 - a. Justifier qu'il existe un entier naturel N tel que :

$$\forall n \geq N, \forall x \in \mathbb{R}, |P_n(x) - P_N(x)| \leq 1.$$

Que peut-on en déduire quant au degré des fonctions polynômes $P_n - P_N$ lorsque : $n \ge N$?

- b. Conclure que f est nécessairement une fonction polynomiale.
- 29. Soit φ une fonction de I dans J, et soit (u_n) une suite de fonctions convergeant uniformément sur J vers u. Montrer que $(u_n \circ \varphi)$ converge uniformément sur I vers $u \circ \varphi$.
- 30. Soient (f_n) et (g_n) deux suites de fonctions de I dans \mathbb{R} ou \mathbb{C} , convergeant uniformément sur I vers des fonctions f et g bornées.

Montrer que $(f_n.g_n)$ converge uniformément sur I.

Convergence simple, uniforme ou normale de séries de fonctions.

31. Etudier la convergence simple sur les intervalles proposés des séries de fonctions $\sum_{n\geq 1} u_n$ suivantes, et donner les meilleurs intervalles sur lesquels il y a convergence uniforme ou normale :

a.
$$\forall n \ge 1, \forall x \in \mathbb{R}^+, u_n(x) = (-1)^n . \ln \left(1 + \frac{x}{n . (1+x)} \right).$$

b.
$$\forall n \ge 1, \forall x \in \mathbb{R}^*, u_n(x) = \frac{1}{x^n + x^{-n}}.$$

c.
$$\forall n \ge 1, \forall x \in]-1,+\infty), u_n(x) = n^2 \left(\frac{1-x}{1+x}\right)^n.$$

Convergence et sommes de séries de fonctions.

32. On pose :
$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = (-1)^n . \ln\left(1 + \frac{x^2}{n.(1+x^2)}\right)$$
.

a. Etudier les différentes convergences de la série $\sum u_n$ sur \mathbb{R} .

On notera S sa somme, lorsqu'elle converge.

b. A l'aide des intégrales de Wallis, justifier :
$$\lim_{x \to +\infty} S(x) = \sum_{n=1}^{+\infty} (-1)^n \cdot \ln\left(1 + \frac{1}{n}\right) = \ln\left(\frac{2}{\pi}\right)$$
.

- 33. On pose, pour : x > 0, $S(x) = \sum_{n=0}^{+\infty} \left(\prod_{k=0}^{n} \frac{1}{x+k} \right)$.
 - a. Justifier que S est définie et continue sur]0,+∞[.
 - b. Trouver une relation liant S(x) et S(x+1).
 - c. Déterminer un équivalent de S(x) en $+\infty$ et en 0.
- 34. On pose : $\forall x \in]-2,+2[, \varphi(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} \frac{1}{n+x}\right).$
 - a. Justifier que ϕ est définie sur]-2,+2[, continue au moins sur [0,1].
 - b. Calculer $\int_0^1 \varphi(x).dx$.
- 35. a. Rappeler l'écriture de e^x sous forme d'une série, pour : $x \in \mathbb{R}$.
 - b. En déduire que la fonction : $x \mapsto e^{2 \cdot \cos(x)}$, peut s'écrire comme la somme d'une série de fonctions.
 - c. En déduire que : $\int_0^{2.\pi} e^{2.\cos(x)} . dx = 2.\pi . \sum_{n=0}^{+\infty} \frac{1}{(n!)^2}$.
- 36. La fonction ζ alternée.

On pose, pour :
$$x > 0$$
, $\zeta_2(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^x}$.

Montrer que ζ_2 est définie, continue et de classe C^1 sur $]0,+\infty)$.

- 37. a. Montrer qu'il existe une unique fonction f définie sur \mathbb{R}^{+*} , telle que :
 - $\forall x > 0$, $f(x+1) + f(x) = \frac{1}{x^2}$, et:
 - $\bullet \lim_{x \to +\infty} f(x) = 0.$
 - b. Montrer que f est continue sur \mathbb{R}^{+*} et en déduire un équivalent de f(x) puis la limite de f en 0.
- 38. Soit S la fonction donnée par : $\forall x \ge 0$, $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{1+x^{2n}}$.
 - a. Déterminer le domaine de définition D de S puis une relation entre S(x) et $S\left(\frac{1}{x}\right)$, pour x non nul dans D
 - b. Préciser les variations de S sur D puis les limites de S aux bornes de D .

Niveau 3.

Convergence des suites de fonctions.

39. Etudier la convergence simple et uniforme sur [0,2] de la suite de fonctions définie par :

$$\forall n \in \mathbb{N}, \forall x \in [0,2]: f_n(x) = n.(1-x)^n.\sin\left(\frac{\pi.x}{2}\right).$$

Peut-on proposer des sous-intervalles de [0,2] sur lesquels il y a convergence uniforme de la suite ?

40. Soient f une fonction de \mathbb{R} dans \mathbb{R} , et (g_n) la suite définie par :

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, g_n(x) = \frac{(f(x))^2}{\sqrt{(f(x))^2 + \frac{1}{n}}}.$$

Montrer que (g_n) converge uniformément sur \mathbb{R} vers |f|.

- 41. Soit (u_n) une suite de fonctions continues de [0,1] dans \mathbb{R} ou \mathbb{C} , convergeant uniformément sur [0,1[vers une fonction f .
 - a. Montrer que la suite $(u_n(1))$ est une suite de Cauchy et donc converge.
 - b. Montrer que la suite (u_n) converge uniformément sur [0,1].
- 42. Soit f définie sur [0,1] par : $\forall x \in [0,1], f(x) = 2.x.(1-x)$.

Pour : $n \ge 1$, on note f_n la fonction fofo...of (itérée n fois).

- a. En remarquant que : $\forall x \in [0,1], f(x) = f(1-x)$, étudier la convergence simple de cette suite de fonctions.
- b. Etudier ensuite la convergence uniforme de cette suite sur [0,1] ou sur des sous-intervalles de [0,1].
- 43. Soit β une fonction deux fois dérivable de \mathbb{R} dans \mathbb{R} , et on suppose que f'' est bornée sur \mathbb{R} .

On définit la suite de fonctions
$$(g_n)$$
 par : $\forall n \ge 1, \forall x \in \mathbb{R}, g_n(x) = n \left(f\left(x + \frac{1}{n}\right) - f(x) \right)$.

A l'aide de l'inégalité de Taylor-Lagrange, montrer que (g_n) converge uniformément sur $\mathbb R$ vers f'.

44. Théorème de Dini.

Soit (u_n) une suite de fonctions continues de [a,b] dans \mathbb{R} telle que : $\forall x \in [a,b]$, $(u_n(x))_n$ décroît vers 0.

- a. Montrer que : $\forall n \in \mathbb{N}, \exists x_n \in [a,b], \sup_{[a,b]} |u_n| = u_n(x_n)$.
- b. Montrer que la suite $(\sup_{[a,b]} |u_n|)$ est décroissante de limite : $L \ge 0$.
- c. Montrer que : $\forall (n, p) \in \mathbb{N}^2, (n \ge p) \Rightarrow (L \le u_n(x_n)).$
- d. Montrer qu'il est possible d'extraire une suite convergente de la suite (x_n) .
- e. En déduire qu'il existe α dans [a,b] tel que : $\forall p \in \mathbb{N}, \ L \leq u_p(\alpha)$.
- f. Conclure que la suite (u_n) converge uniformément sur [a,b].
- g. A l'aide d'un exemple simple, montrer que le résultat n'est plus vrai si l'intervalle n'est pas un seegment.
- 45. Théorème de Weierstrass.

Soit f une fonction de [a,b] dans \mathbb{R} ou \mathbb{C} .

Pour :
$$n \in \mathbb{N}$$
, on pose le polynôme : $B_n(f) = \sum_{k=0}^n \binom{n}{k} f \left(\frac{k}{n}\right) X^k . (1-X)^{n-k}$.

a. On va montrer que f est « uniformément continue sur [0,1] ».

On suppose que :
$$\exists \ \varepsilon > 0$$
, $\forall \ \eta > 0$, $\exists \ (x, x') \in [a, b]^2$, $|x - x'| \le \eta$, et : $|f(x) - f(x')| \ge \varepsilon$.

Montrer qu'il est possible de construire deux suites (x_n) et (x_n) telles que :

$$\forall n \in \mathbb{N}, |x_n - y_n| \le 2^{-n}, \text{ et } : |f(x_n) - f(y_n)| \ge \varepsilon.$$

Montrer alors qu'on extraire de ces deux suites deux sous-suites ($x_{\varphi(n)}$) et ($y_{\varphi(n)}$) convergentes.

En déduire une contradiction.

Conclure que :
$$\forall \ \varepsilon > 0$$
, $\exists \ \eta > 0$, $\forall \ (x, x') \in [a, b]^2$, $(|x - x'| \le \eta) \Rightarrow (|f(x) - f(x')| \le \varepsilon)$.

Soit pour la suite : $\varepsilon > 0$, fixé.

b. Justifier que :
$$\exists \eta > 0$$
, tel que : $\forall (u,v) \in [0,1]^2$, $(|u-v| \le \eta) \Rightarrow (|f(u)-f(v)| \le \frac{\varepsilon}{2})$.

c. Pour :
$$x \in [0,1]$$
, on note : $E_1 = \{0 \le k \le n, \left| x - \frac{k}{n} \right| \le \eta \}$, et : $E_2 = \{0 \le k \le n, \left| x - \frac{k}{n} \right| > \eta \}$.

Vérifier que l'on obtient ainsi une partition de N_n.

On pose alors:
$$\forall \ 1 \le i \le 2$$
, $S_i = \sum_{k \in E_i} \binom{n}{k} \cdot f(x) - f\left(\frac{k}{n}\right) \cdot x^k \cdot (1-x)^{n-k}$.

$$\text{d. Montrer que}: \ S_1 \leq \frac{\mathcal{E}}{2} \ , \ \text{et}: \ S_2 \leq \frac{2.S'_2}{\eta^2} \cdot \sup_{[0,1]} \left| f \right| \ , \ \text{où}: \ S'_2 = \sum_{k=0}^n \binom{n}{k} \left(x - \frac{k}{n} \right)^2 . x^k . (1-x)^{n-k} \ .$$

e. A l'aide de : $t \mapsto (t + y)^n$, où y est un réel fixé, montrer que pour : $n \ge 0$, on a :

•
$$\sum_{k=0}^{n} {n \choose k} k \cdot x^{k} \cdot (1-x)^{n-k} = n \cdot x$$
, puis :

$$\bullet \sum_{k=0}^{n} \binom{n}{k} k^2 . x^k . (1-x)^{n-k} = n.x. (1+(n-1).x) ,$$

et en déduire que : $S'_2 = \frac{x \cdot (1-x)}{n}$.

f. En déduire que :
$$\forall n \in \mathbb{N}^*, \forall x \in [0,1], |f(x) - B_n(f)| \le \frac{\varepsilon}{2} + \frac{1}{2n^2 n} \cdot \sup_{[0,1]} |f|$$
, puis que :

$$\exists N \in \mathbb{N}, \forall n \geq N, \sup_{x \in [0,1]} |f(x) - B_n(f)| \leq \varepsilon,$$

et conclure que $(B_n(f))$ converge uniformément sur [0,1] vers f .

g. Soit enfin f continue de [a,b] dans \mathbb{R} ou \mathbb{C} .

On pose :
$$\forall x \in [0,1], g(x) = f(a+x.(b-a)), \text{ et } : \forall n \in \mathbb{N}^*, \forall t \in [a,b], P_n(t) = B_n(g) \left(\frac{t-a}{b-a}\right).$$

Montrer que la suite (P_n) est une suite de polynômes qui converge uniformément sur [a,b] vers f.

Approximations uniformes de la valeur absolue par des polynômes.

46. Pour
$$n$$
 entier, et x dans [-1,+1], on pose : $P_n(x) = \frac{\int_0^x (1-t^2)^n . dt}{\int_0^1 (1-t^2)^n . dt}$.

- a. Montrer que pour tout n, P_n est une fonction polynomiale.
- b. Montrer que : $\forall \ \epsilon > 0$, (P_n) converge uniformément sur : $I_{\epsilon} = [-1, -\epsilon] \cup [\epsilon, 1]$, vers la fonction "signe".
- c. Montrer que la suite (Q_n) définie par : $\forall n \geq 0$, $\forall x \in [-1,+1]$, $Q_n(x) = \int_0^x P_n(t).dt$, converge uniformément sur [-1,+1] vers la fonction valeur absolue.
- 47. On note (P_n) la suite définie par :
 - $\bullet \ P_0 = 0 ,$

•
$$\forall x \in \mathbb{N}, \forall x \in [0,1], P_{n+1}(x) = P_n(x) + \frac{(x - P_n(x)^2)}{2}.$$

a. Montrer que :
$$\forall n \in \mathbb{N}, \forall x \in [0,1], 0 \le \sqrt{x} - P_n(x) \le \frac{2.\sqrt{x}}{2 + n.\sqrt{x}}$$

On pourra notamment utiliser, après justification, la majoration : $1 - (\sqrt{x} + P_n(x)) \le 1 - \frac{\sqrt{x}}{2}$.

- b. En déduire que la suite (P_n) converge uniformément sur [0,1] vers la racine carrée.
- c. Montrer que la suite de polynômes (Q_n) définie par : $\forall x \in \mathbb{N}, \forall t \in [-1,+1], Q_n(t) = P_n(|t|)^2$, converge uniformément sur [-1,+1] vers la valeur absolue.

Convergence et sommes de séries de fonctions.

48. Soit
$$S$$
 définie par : $\forall x \in]-1,+\infty)$, $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

- a. Justifier que S est définie et continue sur $]-1,+\infty)$.
- b. Montrer que S est monotone sur $]-1,+\infty)$, en précisant son sens de variation.
- c. Calculer: $\forall x \in]-1,+\infty), S(x+1)-S(x)$.

- d. Déterminer un équivalent de S(x) quand x tend vers -1 par valeurs supérieures.
- e. Montrer que : $\forall n \in \mathbb{N}^*$, $S(n) = \sum_{k=1}^n \frac{1}{k}$, et en déduire un équivalent de S(x) en $+\infty$.
- 49. On pose : $\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \left(\frac{k}{n}\right)^n$.
 - a. Justifier que l'on a aussi : $\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \left(1 \frac{k}{n}\right)^n$.
 - b. En déduire que l'on peut définir une suite (f_k) de fonctions sur $[1,+\infty)$, telle que : $u_n = \sum_{k=0}^{+\infty} f_k(n)$.
 - c. Montrer la convergence normale de la série $\sum_{k>0} f_k$ sur [1,+ ∞), puis la limite de (u_n) en + ∞ .
- 50. Pour : $z \in \mathbb{C}$, fixé, on pose : $\forall k \ge 0, \forall x \in [1,+\infty)$,
 - $u_k(x) = \frac{x.(x-1)...(x-k+1)}{k!} \cdot \frac{z^k}{x^k}$, si : $x \ge k$,
 - $u_k(x) = 0$, sinon.
 - a. Montrer que la série $\sum_{k>0} u_k$ converge simplement sur [1,+ ∞) : on notera S sa somme.
 - b. Préciser S(n) pour tout entier : $n \in \mathbb{N}^*$.
 - c. Montrer que la série $\sum_{k\geq 0}u_k$ converge normalement sur [1,+ ∞).
 - d. En déduire que : $\lim_{n\to+\infty} \left(1+\frac{z}{n}\right)^n = e^z$.
- 51. Pour : $\lambda \in \mathbb{C}$, on pose : $\forall x > 0$, $S(x) = \sum_{n=0}^{+\infty} \frac{\lambda^n}{x \cdot (x+1) \dots (x+n)}$.
 - a. Montrer que la fonction S est définie sur $]0,+\infty)$.
 - b. Déterminer $\lim S(x)$.
 - c. Donner un équivalent de S(x) en 0.
- 52. Soient f continue de [0,1] dans \mathbb{R} et f_n définie sur [0,1] par : $\forall n \in \mathbb{N}, \forall x \in [0,1], u_n(x) = x^n.f(x)$.
 - a. Montrer que la suite (u_n) converge uniformément sur [0,1] si et seulement si : f(1)=0.
 - b. Montrer que la série de fonctions $\sum u_n$ converge uniformément sur [0,1] si et seulement si :
 - f(1) = 0,
 - f est dérivable en 0, et :
 - f'(1) = 0.
- 53. Soit f donnée par : $\forall x \in \mathbb{R}, f(x) = \sum_{n=1}^{+\infty} \frac{1}{sh(n.x)}$.
 - a. Déterminer le domaine de définition D de f et montrer que f est continue sur D.
 - b. Etudier les variations de f sur D.
 - c. Déterminer la limite de f et un équivalent de f(x) en $+\infty$.
 - d. Déterminer la limite de f et un équivalent de f(x) en 0.

- 54. Soient : $a \in \mathbb{R}$, et S donnée par : $\forall x \in \mathbb{R}$, $S(x) = \sum_{n=0}^{+\infty} \frac{a^n}{n+x}$.
 - a. Déterminer le domaine de définition D de S suivant les valeurs de a.

On supposera par le suite que a est fixé de telle sorte que le domaine D soit non vide.

- b. Montrer que S est continue sur \mathbb{R}^{+*} au moins.
- c. Vérifier que : $\forall x \in D$, $x+1 \in D$, puis déterminer une relation entre S(x+1) et S(x).
- d. En déduire un équivalent de S(x) en 0.
- e. Calculer $\lim_{n\to +\infty} S(x)$, puis déterminer à l'aide de la question c. un équivalent de S(x) en $+\infty$.
- 55. Soit f une fonction continue de]-1, +1[dans \mathbb{C} .

On définit la suite (
$$f_n$$
) par : $f_0 = f$, et : \forall n \geq 0, \forall $x \in$]-1 +1[, $f_{n+1}(x) = \int_0^x f_n(t).dt$.

Etudier la convergence de la série $\sum f_n$, et exprimer $\sum_{n=0}^{+\infty} f_n$ en fonction de f .

56. On veut trouver les fonctions f continues de [0,1] dans \mathbb{R} , telles que : $\forall x \in [0,1], f(x) = \sum_{n=1}^{+\infty} \frac{f(x^n)}{2^n}$.

Pour les questions a et b, on suppose que f est une telle fonction.

- a. Montrer que la série est toujours convergente sur [0,1], pour f continue sur [0,1].
- b. On suppose que : f(0) = 0, et on pose : $\forall x \in [0,1], h(x) = \sup_{[0,x]} |f|$.

Montrer que : $\forall x \in [0,1], h(x) \le h(x^2)$.

En déduire que h est nulle sur [0,1[, puis que f est nulle sur [0,1].

- c. Montrer que les solutions du problème initial sont les fonctions constantes.
- 57. (\$) Fonction de Van der Waerden.

On note φ_0 l'application 1-périodique définie par :

•
$$\varphi_0(x) = x$$
, si: $x \in \left[0, \frac{1}{2}\right]$,

•
$$\varphi_0(x) = 1 - x$$
, si: $x \in \left[0, \frac{1}{2}\right]$,

et on définit, pour : $n \in \mathbb{N}^*$, $\forall x \in \mathbb{R}$, $\varphi_n(x) = 4^{-n} \cdot \varphi_0(4^n \cdot x)$.

a. Montrer que $\sum_{n\geq 0} \varphi_n$ converge simplement sur $\mathbb R$ et que sa somme S est continue sur $\mathbb R$.

Pour les questions b, c et d, on fixe un réel : $\alpha > 0$, et pour les questions b et c, on fixe : $p \in \mathbb{N}^*$.

b. Montrer qu'on peut choisir : $\varepsilon_p=\pm 1$, de telle sorte que l'intervalle ouvert d'extrémités 4^{p-1} . α et

 4^{p-1} . $\alpha + \frac{\mathcal{E}_p}{A}$ ne contienne aucun demi-entier autrement dit aucun élément tel que son double soit entier.

c.
$$\varepsilon_p$$
 étant fixé à la valeur précédente, on note : $\forall n \in \mathbb{N}, \ \tau_{n,p} = \frac{\varphi_n(\alpha + \varepsilon_p.4^{-p}) - \varphi_n(\alpha)}{\varepsilon_p.4^{-p}}$.

Donner la valeur de $|\tau_{n,p}|$, pour tout entier : $n \in \mathbb{N}$.

$$\text{d. On note enfin}: \forall \ p \in \mathbb{N}, \ \tau_p = \frac{S(\alpha + \varepsilon_p.4^{-p}) - S(\alpha)}{\varepsilon_p.4^{-p}}.$$

Montrer que pour tout $\,p$, $\,\tau_{_p}$ est un entier relatif de même parité que $\,p\,$ puis que la suite ($\,\tau_{_p}$) diverge.

e. En déduire que S n'est dérivable nulle part dans \mathbb{R} .