Séries Numériques.

Niveau 1.

Séries télescopiques.

- 1. Etudier la nature de la série $\sum \left(e^{\frac{1}{n}} e^{\frac{1}{n+1}}\right)$.
- 2. Pour: $x \in]-1,+1[$, et: $n \in \mathbb{N}^*$, on pose: $u_n = \frac{x^n}{(1-x^n)(1-x^{n+1})}$.
 - a. Montrer que $(1-x).u_n$ peut se mettre sous la forme du terme général d'une série télescopique.
 - b. En déduire que la série $\sum_{n} u_n$ converge et préciser sa somme.
- 3. A l'aide d'une série télescopique, montrer la convergence et calculer la somme de la série $\sum \ln \left(1 \frac{1}{n^2}\right)$.
- 4. Pour: $m \in \mathbb{N}, m \ge 2$, on pose: $\forall n \in \mathbb{N}^*, u_n = \frac{1}{n \cdot (n+1) \cdot ... (n+m)}$.

Montrer la convergence de la série $\sum_{n \le 1} u_n$ et calculer sa somme.

Séries à termes positifs ou de signe constant.

- 5. Utilisation d'équivalents et de développements limités. Préciser la nature des séries suivantes en indiquant à partir de quel terme sont définies ces séries.

- $\sum \frac{n}{n^2+1}$, $\sum \frac{ch(n)}{ch(2.n)}$, $\sum \ln \left(\frac{n^2+n+1}{n^2+n-1}\right)$, $\sum \left[e-\left(1+\frac{1}{n}\right)^n\right]$.
- 6. Etudier la convergence des séries suivantes :
 - $\sum n^2 \cdot e^{-\sqrt{n}}$,
- $\bullet \sum \frac{n!}{\ln(n) e^{2.n}},$
- $\sum \frac{1}{n \sqrt[n]{n}}$.
- 7. On pose : $u_n = \frac{n! e^n}{n^n} . n^{\alpha}$, où : $\alpha \in \mathbb{R}$, et : $v_n = \ln(u_{n+1}) \ln(u_n)$.
 - a. A l'aide d'un développement limité, étudier la nature de la série $\sum v_n$ selon la valeur de α .
 - b. En déduire, pour une valeur de α bien choisie, un équivalent de n! en +∞ (avec une constante dont on ne cherchera pas la valeur) soit le début de la formule de Stirling.
- 8. Soient $\sum u_n$ et $\sum v_n$, deux séries à termes réels strictement positifs convergentes.

Montrer à l'aide de majorations que les séries dont les termes généraux sont donnés ci-dessous sont encore convergentes:

• $\max(u_n, v_n)$,

- $\sqrt{u_n.v_n}$,
- $\bullet \frac{u_n.v_n}{u_n+v_n}.$
- 9. Soit $\sum u_n$ une série de réels positifs, et : $\forall n \in \mathbb{N}, v_n = \frac{u_n}{1+u}$.
 - a. Montrer que si $\sum u_n$ converge, alors $\sum v_n$ converge aussi.
 - b. Montrer qu'on peut exprimer u_n à l'aide de v_n pour tout n, et en déduire que la réciproque de

l'implication précédente.

10. Soit $\sum_{n\geq 1} a_n$ une série à termes strictement positifs et convergente.

Quelle est la nature de la série
$$\sum_{n\geq 1} a_n^{1+\frac{1}{n}}$$
 ?

- 11. Pour : $n \in \mathbb{N}^*$, on pose : $u_n = \frac{\sqrt{(n-1)!}}{(1+\sqrt{1}).(1+\sqrt{2})...(1+\sqrt{n})}$.
 - a. Montrer que : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n u_k = 1 \sqrt{n}.u_n$.
 - b. En déduire la nature de la série $\sum_{n\geq 1}u_n$.
 - c. Etudier la nature de la série $\sum_{n\geq 1} \ln \left(1 + \frac{1}{\sqrt{n}}\right)$.
 - d. En déduire la somme de la série $\sum_{n\geq 1}u_n$.
- 12. Soit : $\forall n \in \mathbb{N}^*, R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.
 - a. Justifier l'existence de R_n , pour tout entier : $n \in \mathbb{N}^*$.
 - b. A l'aide de séries géométriques, montrer que : $\forall n \in \mathbb{N}^*, R_n \leq \frac{1}{n \cdot n!}$

Séries de signe quelconque, sommes de séries.

- 13. Quelle est la nature d'une série dont le terme général est la somme des termes généraux d'une série absolument convergente et d'une série semi-convergente ?
- 14. On admet que : $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Montrer la convergence des séries suivantes, puis à l'aide de somme partielles, calculer leur somme.

- $\bullet \sum_{n\geq 0} \frac{1}{\left(2.n+1\right)^2},$
- $\bullet \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}.$
- 15. On admet que : $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.

Montrer la convergence des séries suivantes, puis en transformant le terme général, calculer leur somme.

- $\sum \frac{n^2}{n!}$,
- $\sum \frac{n^3-n}{n!}$.
- 16. A l'aide de séries géométriques, étudier la convergence et la somme éventuelle des séries suivantes :
 - $\bullet \sum 2^{\frac{n}{2}} \cdot \sin \left(\frac{n \cdot \pi}{4} \right) \cdot x^n , \ x \in \mathbb{R},$
 - $\sum x^{2n+1}$, $x \in \mathbb{R}$.

- 17. Pour : $n \in \mathbb{N}$, on pose : $u_n = \sin(\pi . (2 + \sqrt{3})^n)$.
 - a. Montrer à l'aide du binôme de Newton que : $\forall n \in \mathbb{N}, [(2+\sqrt{3})^n + (2-\sqrt{3})^n]$ est un entier pair.
 - b. En déduire que la série $\sum u_n$ converge.
- 18. Déterminer a et b pour que $\sum (\ln(n) + a \cdot \ln(n+1) + b \cdot \ln(n+2))$ converge et sommer alors la série.

Produit infini.

- 19. Soit (u_n) une suite réelle telle que : $\forall n \in \mathbb{N}, u_n > 0$.
 - On pose: $\forall N \in \mathbb{N}, P_N = \prod_{n=0}^{N} u_n$.
 - a. Montrer que : ((P_N) converge vers une limite non nulle) \Leftrightarrow ($\sum_{n=0}^{\infty} \ln(u_n)$ converge).
 - b. Que dire si (P_N) tend vers 0 ?

Séries alternées et autour des séries alternées.

20. Etudier la convergence de :

$$\bullet \sum \frac{(-1)^n}{n+(-1)^n}$$

•
$$\sum \frac{(-1)^n}{\sqrt{n}} \cdot \cos\left(\frac{1}{n}\right)$$

•
$$\sum \frac{(-1)^n}{n+(-1)^n}$$
, • $\sum \frac{(-1)^n}{\sqrt{n}} \cdot \cos\left(\frac{1}{n}\right)$, • $\sum \frac{(-1)^n}{n+(-1)^n \cdot \sqrt{n+1}}$.

- 21. Etudier la convergence de la série $\sum \ln \left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n + \alpha}} \right)$, avec : $\alpha \in \mathbb{R}$.
- 22. Etudier la convergence des séries $\sum_{n=1}^{\infty} (-1)^n . n^{\alpha} . \left(\frac{1}{n} \sin \left(\frac{1}{n} \right) \right)$ et $\sum_{n=1}^{\infty} \frac{1 + (-1)^n . n^{\alpha}}{n^{2 . \alpha}}$, pour : $\alpha \in \mathbb{R}$.
- 23. Soit (u_n) la suite définie par :
 - $u_0 > 0$, et:
 - $\bullet \ \forall \ n \in \mathbb{N}, \ u_{n+1} = 1 e^{-u_n}.$
 - a. Montrer que la suite (u_n) est bien définie, convergente et déterminer sa limite.
 - b. Déterminer la nature de la série $\sum_{n=0}^{\infty} (-1)^n . u_n$
 - c. Déterminer la nature de la série $\sum u_n^2$.
 - d. En utilisant la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u}\right)$, déterminer la nature de la série $\sum_{n\geq 0} u_n$

Vrai-faux.

- 24. Quelles affirmations parmi les suivantes sont vraies ?
 - $(\sum u_n \text{ converge}) \Rightarrow ((u_n^2) \text{ converge}).$
 - ($\sum u_n$ diverge) \Rightarrow ($\sum u_n^2$ diverge).
 - $(\sum u_n \text{ converge}, \forall n \in \mathbb{N}, u_n \ge 0) \Rightarrow (\sum u_n^2 \text{ converge}).$
 - $(\sum u_n \text{ convergente, et } : \forall n \in \mathbb{N}, u_n \neq -1) \Rightarrow (\sum \frac{u_n}{1+u} \text{ convergente)}.$

Autour de la série harmonique.

25. On pose, pour : $n \in \mathbb{N}^*$: $u_n = \frac{1}{n+1} + ... + \frac{1}{2.n}$

Montrer la convergence de (u_n) et déterminer sa limite.

- 26. a. Rappeler la valeur de $(1^2 + 2^2 + ... + n^2)$, pour : $n \in \mathbb{N}^*$.
 - b. Montrer la convergence de la série $\sum_{n\geq 1} \frac{1}{1^2+2^2+...+n^2}$.
 - c. A l'aide d'une décomposition en éléments simples, déterminer sa somme.

<u>Niveau 2.</u> Séries télescopiques.

- 27. Pour $\sum_{n\geq 0}u_n$ une série réelle positive, on pose : $\forall n\in\mathbb{N},\ v_n=\frac{u_n}{(1+u_0).(1+u_1)...(1+u_n)}$.
 - a. Montrer que la série $\sum_{n=0}^{\infty} v_n$ peut se mettre sous la forme d'une série télescopique.
 - b. Montrer que la série $\sum_{n} v_n$ est convergente.
 - c. Dans le cas où la série $\sum_{n\geq 0} u_n$ diverge, préciser la valeur de $\sum_{n=0}^{+\infty} v_n$.
- 28. Soit $\sum_{n>0} a_n$ une série réelle à termes strictement positifs et soit (u_n) la suite définie par :
 - $u_0 > 0$, et:
 - $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}.(u_n + \sqrt{u_n^2 + a_n^2}).$
 - a. Montrer que si la série $\sum_{n\geq 0} a_n$ converge, la suite (u_n) converge également.
 - b. Montrer que si on pose :
 - $u_0 = \frac{1}{2}$, $u_1 = 1$, et:
 - $\bullet \ \forall \ n \in \mathbb{N}^{\star}, \ u_{n+1} = 1 + \sum_{k=1}^{n} \frac{1}{k^{2}},$

on peut construire une suite (a_n) telle que : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}.(u_n + \sqrt{u_n^2 + a_n^2})$, et la série $\sum_{n \geq 0} a_n$ est à termes strictement positifs et divergente.

Qu'en déduit-on ?

- 29. Soit (u_n) une suite réelle définie par :
 - $u_0 \in]0,1[$, et :
 - $\bullet \ \forall \ n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2}.(u_n + u_n^2).$
 - a. Etudier la convergence de la suite (u_n) .
 - b. Etudier la nature de la série $\sum_{n\geq 0} u_n$.
- 30. Soit (u_n) la suite définie par :
 - $u_0 \in \left[0, \frac{\pi}{2}\right]$, et:
 - $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n).$
 - a. Montrer que la suite (u_n) converge vers 0.

- b. En utilisant $(u_{n+1} u_n)$, montrer que la série $\sum_{n \ge 0} u_n^3$ converge.
- c. En utilisant $(\ln(u_{n+1}) \ln(u_n))$, montrer que la série $\sum_{n \geq 0} u_n^2$ diverge.
- 31. Soit (u_n) une suite croissante strictement positive qui tend vers $+\infty$.

On pose:
$$\forall n \in \mathbb{N}, v_n = \frac{u_{n+1} - u_n}{u_n}$$
.

En utilisant la suite
$$(w_n)$$
 où : $\forall n \in \mathbb{N}, w_n = \int_{u_n}^{u_{n+1}} \frac{dt}{t}$, montrer que la série $\sum_{n>0} v_n$ diverge.

Séries à termes positifs ou de signe constant.

32. Etudier la convergence des séries suivantes :

•
$$\sum \left(\frac{n}{n+1}\right)^{n^2}$$
, • $\sum \left[\left(n^a+1\right)^{\frac{1}{a}}-\left(n^b+1\right)^{\frac{1}{b}}\right]$, $(a,b) \in \mathbb{R}^{+\star 2}$, • $\sum \frac{1}{\left(\ln(n)\right)^{\ln(n)}}$.

33. Pour :
$$x \in \mathbb{R}$$
, et : $N \in \mathbb{N}$, on note : $S_N = \sum_{n=1}^N n.x^n$.

- a. Trouver une condition nécessaire pour que (S_N) converge.
- b. A l'aide de $(1-x).S_N$, calculer S_N .
- c. En déduire que (S_N) converge et préciser sa limite.
- 34. Soit (a_n) une suite positive, et (u_n) la suite définie par :
 - $u_0 > 0$

$$\bullet \ \forall \ n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{a_n}{u_n}.$$

- a. Montrer que la suite (u_n) est bien définie, et croissante.
- c. Montrer que si (u_n) converge, sa limite est strictement positive puis que la série $\sum a_n$ converge.
- d. Réciproquement, montrer que si $\sum a_n$ converge, la suite (u_n) est convergente.
- 35. Soient $\sum u_{\scriptscriptstyle n}$ et $\sum \alpha_{\scriptscriptstyle n}$ des séries à termes strictement positifs, telles que :

$$\exists \ n_0 \in \mathbb{N}, \, \forall \ n \geq n_0, \, \frac{u_{n+1}}{u_n} \leq \frac{\alpha_{n+1}}{\alpha_n}.$$

- a. Montrer que : $u_{\scriptscriptstyle n} = O_{\scriptscriptstyle +\infty}(\alpha_{\scriptscriptstyle n})$.
- b. Que peut-on en déduire entre la convergence de $\sum u_{\scriptscriptstyle n}$ et celle de $\sum lpha_{\scriptscriptstyle n}$?

Séries de signe quelconque, somme de séries convergentes.

36. Pour :
$$P \in \mathbb{R}[X]$$
, on pose : $\forall n \in \mathbb{N}$: $u_n = \sqrt{n^2 + 1} - \sqrt{P(n)}$.

a. Montrer que pour que (u_n) tende vers 0, il faut que P soit de degré 2.

Montrer de plus que le coefficient dominant de P ne peut être que 1 puis qu'alors, (u_n) est bien définie au moins à partir d'un certain rang.

b. Déterminer P pour que la série de terme général u_n converge.

37. Pour :
$$x \in \mathbb{R}^{+*}$$
, et : $n \ge 1$, on pose : $u_n = \frac{n!}{x^n} . \prod_{k=1}^n \ln \left(1 + \frac{x}{k} \right)$.

a. Etudier la série de terme général $(\ln(u_{n+1}) - \ln(u_n))$ et en déduire que (u_n) converge en précisant sa

limite.

- b. Montrer que : $\exists \ \alpha \in \mathbb{R}, \ \sum_{n \geq 1} \left(\ln(u_{n+1}) \ln(u_n) \alpha . \ln\left(1 + \frac{1}{n}\right) \right)$ converge (on précisera la valeur de α).
- c. Pour cette valeur, montrer que : $\exists A \in \mathbb{R}, u_n \sim A.n^{\alpha}$.
- d. Etudier la convergence la série $\sum_{n\geq 1}u_n$.
- 38. En transformant $\sin(2.\alpha)$, étudier la série $\sum \ln \left(\cos\left(\frac{x}{2^n}\right)\right)$, pour : $|x| < \frac{\pi}{2}$, et donner sa somme.
- 39. Montrer la convergence de la série $\sum \frac{2.n-1}{n.(n^2-1)}$, et à l'aide d'une décomposition en éléments simples, calculer sa somme.
- 40. Soit $\sum z_n$ une série complexe convergente, et : $\forall N \in \mathbb{N}^*$, $S_N = \sum_{n=1}^N z_n$.
 - a. Montrer que : $\forall N \in \mathbb{N}^*$, $\sum_{n=1}^N \frac{z_n}{n} = \sum_{n=1}^N \frac{S_n}{n.(n+1)} + \frac{S_N}{N+1}$.
 - b. En déduire que la série $\sum_{n\geq 1} \frac{z_n}{n}$ converge.
- 41. On pose, pour : $n \in \mathbb{N}^*$, $S_n = \sum_{k=0}^n \frac{1}{k!}$, et : $T_n = S_n + \frac{1}{n \cdot n!}$.
 - a. Montrer que les deux suites (S_n) et (T_n) sont adjacentes en précisant leur limite commune.
 - b. Montrer l'existence d'une suite d'entiers naturels (p_n) et d'une suite de réels (r_n), telles que :
 - $\forall n \in \mathbb{N}, n!.e = p_n + r_n$,
 - (r_n) converge vers 0.
 - c. Montrer que : $\forall n \in \mathbb{N}, \ 0 \le e S_{n+1} \le \frac{1}{(n+1).(n+1)!}$, et en déduire un équivalent de r_n en $+\infty$.
 - d. Quelle est la nature de la série $\sum_{n=0}^{\infty} \sin(2\pi n! e)$?
 - e. Quelle est la nature de la série $\sum_{n>0}^{n=1} \sin(\pi . n! . e)$?

Produit infini.

- 42. Pour : $N \ge 2$, on pose : $P_N = \prod_{n=2}^N \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$.
 - a. Justifier que : $\forall N \geq 2$, $P_N > 0$, puis à l'aide du logarithme, montrer que (P_N) tend vers 0.
 - b. En utilisant un équivalent lié à la série harmonique, montrer que : $\exists C \in \mathbb{R}^*, P_N \sim \frac{C}{\sqrt{N}}$.
- 43. Pour (u_n) une suite à termes positifs, on pose : $\forall N \in \mathbb{N}, P_N = \prod_{n=0}^{N} (1+u_n)$.

Montrer l'équivalence : $((P_N) \text{ converge}) \Leftrightarrow (\sum_{n\geq 0} u_n \text{ converge}).$

Séries alternées et autour de la série alternée.

- 44. Etudier la convergence de la série $\sum (-1)^n \sqrt[n]{n} \cdot \sin\left(\frac{1}{n}\right)$.
- 45. Montrer que la série $\sum_{n\geq 0} \frac{(-1)^n.8^n}{(2.n)!}$ converge et que sa somme est un réel négatif.
- 46. a. Justifier l'existence de : $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$, pour tout entier : $n \in \mathbb{N}^*$.
 - b. Montrer que : $\forall n \in \mathbb{N}, R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k \cdot (k+1)}$.
 - c. Déterminer un équivalent de R_n en $+\infty$.
 - d. En déduire la nature de la série $\sum_{n\geq 1} R_n$.

Autour de la série harmonique.

- 47. Pour : $n \ge 1$, on pose : $S_N = \sum_{k=1}^{n} \frac{1}{k + \sqrt{k}}$.
 - a. Donner un équivalent simple de S_n en $+\infty$.
 - b. Montrer qu'il existe : $C \in \mathbb{R}$, $S_n = \ln(n) + C + \varepsilon(n)$, où $(\varepsilon(n))$ tend vers 0 en $+\infty$.

Séries de Bertrand.

48. a. On note f la fonction définie sur]1,+ ∞) par : $\forall x > 1$, $f(x) = \ln(\ln(x))$.

En appliquant le théorème des accroissements finis à f , montrer que la série $\sum_{n\geq 2}\frac{1}{n.\ln(n)}$ diverge.

- b. Montrer que : $\forall \alpha < 1$, $\sum_{n \ge 2} \frac{1}{n^{\alpha} . \ln(n)}$ diverge.
- c. Montrer que : $\forall \alpha \geq 2, \forall \beta \in \mathbb{R}, \sum_{n\geq 2} \frac{1}{n^{\alpha}.(\ln(n))^{\beta}}$ converge.

Produit de Cauchy.

- 49. Montrer que le produit de Cauchy de la série $\sum_{n>0} \frac{(-1)^n}{n+1}$ par elle-même converge.
- 50. Pour : $\alpha \in \mathbb{R}$, on pose : $\forall n \ge 2$, $u_n = \sum_{k=1}^{n-1} \frac{1}{k^{\alpha} \cdot (n-k)^{\alpha}}$.
 - a. Montrer que la série $\sum_{n>2} u_n$ diverge pour : $\alpha \le 0$.
 - b. Montrer que la série $\sum_{n\geq 2} u_n$ converge pour : $1 < \alpha$.
 - c. A l'aide de la fonction : $x \mapsto x \cdot (1-x)$, montrer que la série $\sum_{n \geq 2} u_n$ diverge pour : $0 < \alpha \leq 1$.

Niveau 3.

Séries télescopiques.

- 51. Soit (u_n) une suite de réels strictement positifs tels que : $\frac{u_{n+1}}{u_n} = 1 \frac{\alpha}{n} + O_{+\infty} \left(\frac{1}{n^2}\right)$, avec : $\alpha \in \mathbb{R}$.
 - a. Montrer que la suite $(n^{\alpha}.u_n)$ converge et préciser ce qu'on peut dire de sa limite.
 - b. Pour quelles valeurs de α la série $\sum u_n$ converge-t-elle ?

c. Pour quelles valeurs de α la série $\sum_{n=0}^{\infty} (-1)^n . u_n$ converge-t-elle ?

Séries à termes positifs ou de signe constant.

- 52. Nature de la série de terme général : $e^{a.n^2} \left(1 \frac{a}{n}\right)^{n^2}$, où a et b sont des réels.
- 53. Etudier la convergence des séries suivantes :

•
$$\sum \left[\arctan\left(1+\frac{1}{n^a}\right)-\frac{\pi}{4}\right]$$
, a > 0, • $\sum \left|\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right)^n-\frac{1}{\sqrt{e}}\right|$.

•
$$\sum \left[\left(\cos \left(\frac{1}{\sqrt{n}} \right) \right)^n - \frac{1}{\sqrt{e}} \right]$$

- 54. Montrer la convergence de la série $\sum_{n=1}^{n} \frac{\lfloor \sqrt{n+1} \rfloor \lfloor \sqrt{n} \rfloor}{n}$, et calculer sa somme.
- 55. Soit $\sum u_n$ une série à termes strictement positifs, telle que : $\exists L \in [0,+\infty), \left(u_n^{\frac{1}{n}}\right)$ tend vers L en $+\infty$.
 - a. Montrer que si : L < 1, alors la série converge.
 - b. Montrer que si : L > 1, alors la série diverge.
 - c. Appliquer cette règle à la série : $\sum_{n > 2} \frac{n^{\ln(n)}}{(\ln(n))^n}$ (cette règle s'appelle la règle de Cauchy).
- 56. Soit (u_n) une suite de réels positifs et (b_n) une suite strictement décroissante de réels de limite nulle.
 - a. Montrer que si $\sum_{n\geq 1} u_n$ converge, alors $\sum_{n\geq 1} \left((b_n b_{n+1}) . \sum_{k=1}^n \frac{u_k}{b_k} \right)$ converge et que leurs sommes sont égales.
 - b. En déduire que si $\sum_{n=1}^{\infty} u_n$ converge, alors : $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} \left(\frac{1}{n \cdot (n+1)} \cdot \sum_{k=1}^{n} k \cdot u_k \right)$.
 - c. Déduire de même de la question a que si (u_n) est une suite strictement décroissante de limite nulle et si
 - $\sum_{n=1}^{\infty} u_n \text{ converge, alors : } \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} n.(u_n u_{n+1}).$
 - d. A l'aide de la guestion c, retrouver la divergence de la série harmonique.

Séries de signe quelconque, somme de séries convergentes.

- 57. Pour : $n \in \mathbb{N}$, on pose : $u_n = \frac{(2.n)!}{2^{2.n} n!^2}$
 - a. En étudiant la série de terme général $(\ln(u_n) \ln(u_{n+1}))$, montrer que (u_n) tend vers 0.
 - b. En étudiant la série de terme général $(\ln((n+1).u_{n+1}) \ln(n.u_n))$, montrer que $(n.u_n)$ tend vers $+\infty$.

On pose:
$$\forall n \in \mathbb{N}, v_n = \frac{u_n}{n+1}$$
, et: $\forall N \in \mathbb{N}, V_N = \sum_{n=0}^{N} v_n$.

- c. Montrer que : $\forall n \in \mathbb{N}, (2.n+4).v_{n+1} = (2n+1).v_n$.
- d. En déduire, en sommant les égalités précédentes, une expression de V_N à l'aide de N et de u_{N+1} .
- e. En déduire que (V_N) converge puis donner la somme de la série $\sum_{n=1}^{\infty} \frac{u_n}{n+1}$.
- 58. Montrer que la série de terme général $\frac{1+\sqrt{n+1}-2.\sqrt{n}}{2^{n+1}}$ converge et préciser sa somme.

59. Soit : $\alpha \in \mathbb{R}^{+*}$, $(a,b) \in \mathbb{R} \setminus \mathbb{N}$, et (u_n) définie par :

•
$$u_0 = \alpha$$
,

•
$$\forall n \in \mathbb{N}, u_{n+1} = \frac{n-a}{n-b}.u_n$$
.

a. En posant : $v_n = n^\beta . u_n$, et en étudiant (pour n assez grand) la série de terme général $(\ln(v_{n+1}) - \ln(v_n))$, montrer qu'il existe une valeur de β que l'on précisera pour laquelle cette série converge.

b. En déduire :
$$\exists (A, \beta) \in \mathbb{R}^* \times \mathbb{R}, \ u_n \sim \frac{A}{n^{\beta}}$$
.

c. Indiquer pour quelles valeurs de a et de b la série $\sum_{n\geq 0}u_n$ converge, et en revenant à des sommes

partielles, montrer que :
$$\sum_{n=0}^{+\infty} u_n = \frac{b+1}{b+1-a} \cdot \alpha$$
 .

Séries alternées, et autour des séries alternées.

60. Etudier la convergence de :

$$\bullet \sum \frac{(-1)^n}{n-\ln(n)},$$

$$\bullet \sum \sin(2.\pi.\sqrt{n^2+(-1)^n}).$$

- 61. On note E l'ensemble des suites réelles (u_n) telles que : $\forall n \geq 0$, $u_{n+2} = (n+1).u_{n+1} + u_n$.
 - a. Montrer que E est un R-espace vectoriel.

En remarquant que tout élément de E est défini par ses deux premiers termes, donner une base de E.

b. On note (a_n) et (b_n) les éléments de E tels que : $a_0=1, a_1=0, b_0=0, b_1=1$.

Montrer que ces deux suites sont croissantes à partir du rang 1 et tendent vers +∞.

c. On pose : $\forall n \in \mathbb{N}, \ w_n = a_{n+1}.b_n - a_n.b_{n+1}$.

Calculer W_n pour tout entier n.

d. On définit : $\forall n \in \mathbb{N}^*, c_n = \frac{a_n}{b_n}$.

A l'aide de la série $\sum_{n\geq 1}(c_{n+1}-c_n)$, montrer que la suite (c_n) converge vers un réel que l'on notera L .

- e. En étudiant $(L-c_n)$ en déduire l'existence d'un unique réel α tel que $(a_n+\alpha b_n)$ converge vers 0.
- 62. Montrer la convergence et calculer la somme de la série $\sum \ln \left(1 \frac{(-1)^n}{n}\right)$.

Vrai-faux.

63. Quelles affirmations parmi les suivantes sont vraies ?

a) (
$$\sum a_n$$
 convergente, et : $\forall n \in \mathbb{N}, a_n \ge 0$) \Rightarrow ($\sum \frac{\sqrt{a_n}}{n}$ convergente).

b) (
$$\sum u_n$$
 convergente) \Rightarrow ($\sum (-1)^n . u_n^3$ convergente).

Autour de la série harmonique.

64. Pour :
$$a > 0$$
 , et : $n \ge 1$, on pose : $u_n = \frac{a.(a+1)...(a+n-1)}{n!}$.

- a. En étudiant $\ln(u_n)$ et suivant les valeurs de a, donner la nature et la limite éventuelle de la suite (u_n) .
- b. En utilisant au besoin la suite $\ln(n.u_n)$, montrer que la série $\sum_{n\geq 1}u_n$ diverge.

- 65. Pour : $n \in \mathbb{N}^*$, on pose : $H_n = \sum_{k=1}^n \frac{1}{k}$, et : $\forall p \in \mathbb{N}$, $n_p = \min\{n \in \mathbb{N}^*, H_n \ge p\}$.
 - a. Justifier l'existence de n_p pour tout entier p (on précisera n_0, n_1, n_2, n_3).
 - b. Montrer que (n_p) tend vers $+\infty$ quand p tend vers $+\infty$.
 - c. A l'aide d'encadrements, montrer que : $n_p \sim e^{p-\gamma}$, où γ est la constante d'Euler.

Sommation par paquets.

- 66. On considère la série de terme général : $u_n = (-1)^n \cdot \frac{\sin(\ln(n))}{n}$, pour : $n \ge 1$.
 - a. A l'aide de sommes partielles, montrer que la convergence de la série $\sum_{n\geq 1} u_n$ est équivalente à celle de

la série
$$\sum_{n\geq 1}v_n$$
 , avec : $\forall n\geq 1$, $v_n=(u_{2.n}+u_{2.n+1})$.

- b. Montrer que : $\forall n \ge 1$, $v_n = \frac{\sin(\ln(2.n))}{2.n.(2.n+1)} + w_n$.
- c. Montrer que la série $\sum_{n\geq 1} w_n$ converge, et en déduire la convergence de $\sum_{n\geq 1} v_n$ puis de $\sum_{n\geq 1} u_n$.
- 67. On définit, à partir de la série harmonique, une nouvelle série de terme général a_n de la façon suivante : on prend p termes positifs, puis q termes négatifs, puis à nouveau p termes positifs, et ainsi de suite...

Ainsi, pour :
$$p = 3$$
, $q = 2$, on aura : $a_1 = \frac{1}{1} + \frac{1}{3} + \frac{1}{5}$, $a_2 = -\frac{1}{2} - \frac{1}{4}$, $a_3 = \frac{1}{7} + \frac{1}{9} + \frac{1}{11}$, etc...

Montrer que la série $\sum a_n$ converge et calculer sa somme.

- 68. Pour : $n \in \mathbb{N}$, on pose : $u_n = \frac{j^n}{\sqrt{n}}$, où j est la racine cubique de l'unité habituelle.
 - a. Montrer que la série de terme général $(u_{3,n} + u_{3,n+1} + u_{3,n+2})$ est convergente.
 - b. En déduire que la série $\sum u_n$ converge.

Transformation d'Abel.

- 69. Pour (u_n) et (v_n) deux suites réelles ou complexes, on note, pour : $p \in \mathbb{N}^*$, $\sigma_p = \sum_{k=1}^p v_k$.
 - a. Montrer que : $\forall p \ge 1$, $\sum_{k=1}^p u_k.v_k = u_p.\sigma_p + \sum_{k=1}^{p-1} (u_k u_{k+1}).\sigma_k$.
 - b. On suppose de plus que ces suites sont telles que :
 - ullet (u_n) est réelle, décroissante de limite 0,
 - la suite (σ_p) est une suite bornée.

Montrer que la série de terme général $u_n.v_n$ converge.

c. Etudier la convergence des séries :

•
$$\sum_{n\geq 2} \frac{\cos(n)}{n}$$
 • $\sum_{n\geq 1} \frac{e^{i.n.\theta}}{n^{\alpha}}$, avec : $(\alpha, \theta) \in \mathbb{R}^2$.