T.D. 10 – Équations différentielles linéaires

- 1. Résoudre les équations différentielles suivantes :
 - a) $(x^2 4x)$ y' (x + 2) y = x (chercher un polynôme solution). Étudier le raccordement en 0.
 - b) $y' \sin t + y \cos t = \sin^2 t$. Étudier les possibilités de raccordement.
- **2.** © Soit f de classe C^1 sur \mathbb{R}^+ telle que $\lim_{+\infty} (f + f') = 0$. Montrer que $\lim_{+\infty} f = 0$. (On pourra exprimer f comme solution de l'équation différentielle y' + y = h où h = f' + f!)
- 3. Soit $\lambda > 0$. Écrire à l'aide d'une intégrale la solution générale de (E) $xy' + \lambda y = \frac{1}{1+x}$.

Existe-t-il des solutions admettant une limite finie en 0?

Existe-t-il des solutions développables en série entière en 0 ?

- **4.** Soient $\lambda \in \mathbb{C}^*$, $b \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$, 2π -périodique et (E) $y' + \lambda y = b$.
 - a) Montrer qu'une solution f de (E) sur \mathbb{R} est 2π -périodique si et seulement si $f(0) = f(2\pi)$.
 - b) Discuter selon λ et b l'existence de solutions de (E) 2π -périodique sur \mathbb{R} .
- 5. Résoudre les systèmes différentiels suivants :

a)
$$\begin{cases} x' = 3x - y + \cos t \\ y' = x + y + 2\sin t \end{cases}$$
 b)
$$\begin{cases} x' = y + z - 3x \\ y' = z + x - 3y \\ z' = x + y - 3z \end{cases}$$
 c)
$$\begin{cases} x' = 3x + y - z \\ y' = x + y + z \\ z' = 2x + 2z \end{cases}$$

- 6. Résoudre les équations différentielles suivantes :
 - a) $y'' 2\alpha y' + y = (x+1)e^{\alpha x} \ (\alpha \in \mathbb{R} \ \text{donn\'e})$
 - b) (2x+1)y'' + (4x-2)y' 8y = 0 (chercher une solution de la forme $x \mapsto e^{\alpha x}$)
 - c) x(x-1)y'' + 3xy' + y = 0 (chercher une série entière solution, trouver les solutions maximales)
 - d) $x^2y'' + 4xy' + (2-x^2)y = 1$ (poser $u = x^2y$ sur \mathbb{R}^{+*} et \mathbb{R}^{-*} ; étudier le recollement en 0)
 - e) $(1+t^2)^2y'' + 2t(1+t^2)y' + my = \frac{t}{1+t^2} \ (m \in \mathbb{R} \ \text{donn\'e} \ ; \ \text{poser} \ x = \arctan t).$
- 7. Condition nécessaire sur a, b respectivement C^1 et C^0 sur I pour que y'' + a(x)y' + b(x)y = 0 admette deux solutions y_1 , y_2 telles que $y_2 = xy_1$? Est-ce une condition suffisante? Résoudre: $y'' + 2xy' + (x^2 + 1)y = x \exp(-x^2/2)$.
- **8.** Équations de Riccati : ce sont les équations de la forme $y' = a(x)y^2 + b(x)y + c(x)$.

Lorsqu'on connaît une solution "particulière" y_0 , le changement de fonction $y=z+y_0$ conduit à une équation de Bernoulli... Par exemple, en remarquant que $x\mapsto x^2$ est solution, intégrer

(E)
$$(1+x^3)y' = y^2 + x^2y + 2x$$

9. Soit $(a,b) \in \mathbb{R}^{+*} \times \mathbb{R}$ fixé. On appelle φ la solution maximale du problème de Cauchy :

$$y' = x^2 + y^2$$
 et $y(a) = b$

et $]\alpha, \beta[$ son intervalle de définition.

- a) Montrer que $\beta \leq a + \frac{\pi}{a}$.
- **b)** En déduire que $\beta \alpha \leq 2a + \frac{2\pi}{a}$ (dans le cas $\alpha < -a$, on pourra utiliser $\psi : x \mapsto -\varphi(-x)$).