
PSI* — 2016/2017 Le 03/12/2016.

D.S. 4 (4 heures)

Exercice : recherche d’équivalents

Soient deux suites (an) et (bn) à termes strictement positifs et telles que an ∼
∞
bn.

On suppose d’autre part que la fonction f : t �→
∞�

n=0

ant
n est définie sur R.

1) Quelle est l’ensemble de définition de la fonction g : t �→
∞�

n=0

bnt
n ?

2) Justifier l’existence d’une suite (γn) convergeant vers 0 et telle que :

∀n ∈ N an = bn (1 + γn) .

3) Soit m ∈ N.

a) Prouver l’existence de
δm = sup

n≥m+1

|γn| .

b) Montrer que :

∀t > 0 ∀m ∈ N

����
f (t)

g (t)
− 1

���� ≤ δm +
1

bm+1tm+1

m�

n=0

|γn| bnt
n.

c) En déduire que :
f (t) ∼

t→+∞
g (t) .

Applications :

4) Soit h la fonction définie par

h : t �→
∞�

n=0

cnt
n où cn =

�
1 +

1

n+ 1

�n+1

n!
.

a) Déterminer l’ensemble de définition de la fonction h.

b) Trouver un équivalent de h (t) au voisinage de +∞.

5) Soit (E) l’équation différentielle définie sur R par :

ty′′ (t) + (1− t) y′ (t) = 1.

a) Démontrer que (E) possède une unique solution z développable en série entière à l’origine telle que

z (0) = 0 et z′ (0) = 1.

Préciser les coefficients de ce développement.

b) Donner une expression simple de z′ (t) pour t > 0.

c) Trouver un équivalent de z (t) au voisinage de +∞.
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Problème A : encore la fonction ζ !

On posera, dans tout le problème, pour tout entier naturel non nul N et pour tout réel s > 0 :

SN (s) =
N�

n=1

(−1)n−1

ns
, HN (s) =

N�

n=1

1

ns
, KN (s) =

N�

n=1

1

(2n− 1)s
.

1) Définition de ζ : soient s > 0 et n un entier naturel non nul. Posons :

un (s) =
1

ns
−

� n+1

n

dt

ts
.

a) Montrer que la fonction un ainsi définie est continue sur R+∗.

b) À l’aide d’une intégration par parties, montrer que :

0 ≤ un (s) ≤
s

ns+1
.

c) Prouver que la série de fonctions de terme général un converge simplement sur ]0,+∞[ et que sa
somme, qui sera notée U dans la suite, est une fonction continue sur ]0,+∞[.

d) Prouver que, pour tout s ∈ ]0, 1[ ∪ ]1,+∞[, la suite de terme général

HN (s)−
N1−s

1− s

possède une limite, notée ζ (s), que l’on exprimera à l’aide de U (s).

e) Prouver que la suite de terme général HN (1)− lnN admet une limite strictement positive notée γ
dans la suite du problème.

2) Autre expression de ζ

a) Soit s un réel strictement positif ; prouver que la série de fonctions de la variable réelle s
�

n≥1

(−1)n−1

ns

définit sur ]0,+∞[ une fonction de classe C1 qui sera notée f dans la suite.

b) Exprimer S2N (s) à l’aide de H2N (s) et HN (s). En déduire, si s ∈ ]0, 1[ ∪ ]1,+∞[ :

f (s) =

�
1−

1

2s−1

�
· ζ (s) .

c) En déduire, en décomposant autrement S2N (s) que, pour les mêmes valeurs de s, la suite de terme
général

KN (s)−
N1−s

2s (1− s)
a une limite que l’on exprimera à l’aide de ζ (s).

3) Étude au voisinage de +∞ : quelle est la limite de f (s) lorsque s tend vers +∞ ?

4) Étude au voisinage de 1

a) Montrer que, lorsque s est au voisinage de 1 :

ζ (s) =
1

s− 1
+ γ + o (1) .

b) Prouver, en calculant f ′ (1) de deux façons, que :
∞�

n=1

(−1)n lnn

n
=

�
γ −

ln 2

2

�
· ln 2.
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Problème B : étude qualitative des solutions d’une équation différentielle

On note (E) l’équation différentielle :

∀x ∈ R f ′′ (x) + q (x) f (x) = 0 où q (x) = 1 +
1

1 + x2 + x4
.

On admettra que, pour tout intervalle I de R, l’ensemble SI des solutions de (E) sur I est un plan
vectoriel et que, pour tout x0 dans I et tout (y0, v0) dans R2, il existe une unique solution f de (E) sur
I vérifiant les conditions initiales f (x0) = y0 et f ′ (x0) = v0.

1) Si f ∈ SR, montrer que f est de classe C∞ sur R.

2) Inégalité de Gronwall : soient h ∈ C1 (R,R) et u ∈ C0 (R,R) telles que

∀x ∈ R h′ (x) ≤ u (x)h (x) .

Montrer que

∀ (x, y) ∈ R2 x ≤ y ⇒ h (y) ≤ h (x) exp

�� y

x

u (t) dt

�
.

On pourra étudier la fonction x �→ h (x) exp

�� y

x

u (t) dt

�
.

Dans les questions 3 et 4, f est une solution de (E) sur R

3) Les solutions sont bornées : soit h = f2 + (f ′)2.

a) Montrer que : ∀x ∈ R h′(x) ≤
�
q(x)− 1

�
h(x).

b) En déduire que f et f ′ sont bornées sur R+.

c) Utilisant une fonction auxiliaire, montrer que f et f ′ sont bornées sur R−, et donc finalement sur R.

4) Conditions de nullité en un point : on suppose qu’existe a ∈ R tel que f(a) = f ′(a) = 0.

a) Que peut-on dire de f , compte tenu de l’unicité admise en préambule ?

On se propose de démontrer directement ce résultat.

b) Montrer que : ∀x ∈ [a,+∞[ h(x) ≤ 0, où h est la fonction définie au 3. Qu’en conclure sur f(x) ?

c) Soit Φ : x �→ f (2a− x). Déterminer r ∈ C0 (R,R) telle que Φ′′ + rΦ = 0.

d) Montrer que f = 0.

Dans les questions 5 et 6, f est une solution non nulle de (E) sur R

5) Les zéros sont isolés

a) On suppose qu’existe une suite (xn) de réels distincts deux à deux, convergeant vers un réel x et
telle que : ∀n ∈ N f (xn) = 0.

Montrer que f(x) = f ′(x) = 0. Conclusion ?

b) On admettra ici le théorème de Bolzano-Weierstrass : “si (xn) est une suite de réels bornée, alors
(xn) admet une suite extraite convergente”. Si (a, b) ∈ R2 avec a < b, montrer que f n’a qu’un
nombre fini de zéros dans [a, b].

6) Comparaison avec les solution de l’équation y′′ + y = 0

a) Donner les solutions sur R de (F ) : y′′ + y = 0.

On va montrer que f peut être approchée en +∞ par une solution de (F ).

b) Montrer qu’il existe un couple unique (a, b) de fonctions de classe C∞ sur R et bornées telles que
pour tout x ∈ R, 	

f (x) = a (x) cos (x) + b (x) sin (x)
f ′ (x) = −a (x) sin (x) + b (x) cos (x)

c) Montrer que pour tout x ∈ R,
	
a′ (x) =

�
q (x)− 1

�
sin (x) f (x)

b′ (x) =
�
1− q (x)

�
cos (x) f (x)
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d) Montrer que a et b admettent des limites finies en +∞.

e) Justifier enfin que f peut être approchée en +∞ par une solution de (F ), c’est-à-dire qu’il existe g
solution de (F ) sur R telle que lim

+∞
(f − g) = 0.

7) Étude (partielle) du développement en séries entières des solutions de (E)

a) Soit f une solution de (E) développable en série entière sur un certain intervalle non trivial centré

en 0 sur lequel f (x) =
∞�

n=0

cnx
n.

(i) Vérifier que :

(S)






c2 = −c0

c3 = −
1

3
c1

c4 = −
1

3
c2 −

1

12
c0

c5 = −
2

5
c3 −

1

20
c1

∀n ∈ [[4,+∞[[ cn+2 =
−n2 + n− 2

(n+ 1) (n+ 2)
cn +

−n2 + 5n− 7

(n+ 1) (n+ 2)
cn−2 −

1

(n+ 1) (n+ 2)
cn−4

.

(ii) Soit β > 2. Montrer que, si n est assez grand,

|cn+2| ≤ βmax
�
|cn| , |cn−2| , |cn−4|

�
.

(iii) Soit β > 2. Montrer qu’existe C > 0 tel que : ∀n ∈ N |cn| ≤ Cβ
n.

(iv) En déduire que le rayon de convergence de f est supérieur ou égal à
1

2
.

b) Montrer que toute solution de (E) est développable en série entière sur
�
−
1

2
,
1

2

�
.

Le problème général de l’éducation intellectuelle consiste à faire parvenir, en
peu d’années, un seul entendement, le plus souvent médiocre, au même point de
développement qui a été atteint, dans une longue suite de siècles, par un grand
nombre de génies supérieurs appliquant successivement, pendant leur vie entière,
toutes leurs forces à l’étude d’un même sujet.

Auguste Comte


