Compléments de calcul intégral (corrigé niveau 2).

Théorème de convergence dominée.

19. a. On peut commencer par remarquer que :
$$\forall$$
 $n \ge 0$, \forall $x \in \mathbb{R}$, $\left| \frac{\sin^n(x)}{x^2 + 1} \right| \le \frac{1}{x^2 + 1} = \varphi(x)$,

et la fonction majorante étant intégrable sur R, toutes les intégrales existent.

Puis on note:
$$\forall n \ge 0, \forall x \in \mathbb{R}, u_n(x) = \left| \frac{\sin^n(x)}{x^2 + 1} \right|.$$

Alors:
$$\forall n \ge 0$$
, $\left| \int_{-\infty}^{+\infty} \frac{\sin^n(x)}{x^2 + 1} . dx \right| \le \int_{-\infty}^{+\infty} \left| \frac{\sin^n(x)}{x^2 + 1} \right| . dx = \int_{-\infty}^{+\infty} u_n(x) . dx$.

On constate alors que:

- ullet toutes les fonctions u_n sont continues, donc continues par morceaux sur \mathbb{R} ,
- la suite (u_n) converge simplement sur $\mathbb R$ vers la fonction u, nulle partout sauf pour les valeurs :

$$x_k = \frac{\pi}{2} + k.\pi$$
, avec : k $\in \mathbb{Z}$, où elle vaut 1,

- cette fonction u est continue par morceaux sur R,
- la fonction φ du début de la question majore toutes les fonctions u_n sur \mathbb{R} , et elle est continue et intégrable sur \mathbb{R} .

Donc le théorème de convergence dominée s'applique et : $\lim_{n\to +\infty} \int_{-\infty}^{+\infty} u_n(x).dx = \int_{-\infty}^{+\infty} (\lim_{n\to +\infty} u_n(x)).dx = 0$.

Le théorème des gendarmes montre alors que la suite des intégrales proposées tend aussi vers 0.

b. On travaille de la même façon pour cette deuxième suite d'intégrales sur ℝ⁺.

On utilise comme fonction majorante la fonction φ définie par : \forall x \in \mathbb{R} , $\varphi(x) = e^{-x^2}$, et comme fonction

limite la fonction u nulle sur \mathbb{R}^+ sur pour les valeurs : $x_k = \frac{\pi}{2} + k.\pi$, $k \in \mathbb{N}$, où elle vaut : $u(x) = e^{-x_k^2}$.

En appliquant de même successivement le théorème de convergence dominée puis le théorème des gendarmes, on déduit à nouveau que la suite des intégrales tend vers 0.

20. a. Puisque la série est absolument convergente, la suite (a_n) est bornée et on peut noter M un majorant (non nul) de $(|a_n|)$.

Alors:
$$\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, \left| \frac{a_n}{n!} . x^n \right| \leq \frac{M}{n!} . |x|^n = b_n$$
.

Si:

- x = 0, la série définissant S(x) est la série nulle, donc est convergente,
- $\mathbf{x} \neq \mathbf{0}$, alors : $\forall \mathbf{n} \in \mathbb{N}, \ b_n \neq 0$, et : $\forall \mathbf{n} \in \mathbb{N}, \ \left| \frac{b_{n+1}}{b_n} \right| = \frac{|\mathbf{x}|}{n+1}$, qui tend vers 0 quand n tend vers + ∞ .

La règle de d'Alembert montre alors la convergence de la série S(x).

Conclusion : S(x) converge pour tout réel x et : $\mathcal{D}_S = \mathbb{R}$.

b. Commençons par remarquer que la fonction S est continue sur R.

En effet : $\forall A > 0$, la série de fonctions $\sum_{n>0} v_n$, avec : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, v_n(x) = \frac{a_n}{n!} x^n$, converge

normalement sur [-A,+A] puisque : \forall n \in N, \forall x \in [-A,+A], $|v_n(x)| \leq \frac{M}{n!}$. Aⁿ, et la série majorante,

comme série exponentielle, est convergente.

On peut ensuite écrire :

$$\forall \ \mathbf{x} \in \mathbb{R}^+, \ S(x).e^{-x} = \sum_{n=0}^{+\infty} \frac{a_n}{n!}.x^n.e^{-x} \ , \ \text{puis noter} : \forall \ \mathbf{n} \in \mathbb{N}, \ \forall \ \mathbf{x} \in \mathbb{R}^+, \ u_n(x) = \frac{a_n}{n!}.x^n.e^{-x} \ .$$

Alors:

• toutes les fonctions u_n sont définies, continues sur \mathbb{R}^+ , et intégrables sur \mathbb{R}^+ .

En effet : \forall $n \in \mathbb{N}$, $\int_0^{+\infty} |u_n| = \frac{|a_n|}{n!} \cdot \int_0^{+\infty} x^n \cdot e^{-x} \cdot dx$, et un calcul classique par récurrence montre que :

$$\forall \mathsf{n} \in \mathsf{N}^{\star}, \ \int_{0}^{+\infty} x^{n} \cdot e^{-x} \cdot dx = \left[-x^{n} \cdot e^{-x}\right]_{0}^{+\infty} + n \cdot \int_{0}^{+\infty} x^{n-1} \cdot e^{-x} \cdot dx = n \cdot \int_{0}^{+\infty} x^{n-1} \cdot e^{-x} \cdot dx = n! \cdot \int_{0}^{+\infty} e^{-x} \cdot dx = n! \cdot \int_{0}^{+\infty} e^{-x} \cdot dx = n! \cdot \int_{0}^{+\infty} x^{n-1} \cdot dx = n! \cdot$$

- la série de fonctions $\sum_{n\geq 0}u_n$ converge simplement sur \mathbb{R}^+ vers sa somme qu'on notera σ ,
- la fonction σ est définie et continue par morceaux (car continue) sur \mathbb{R}^+ ,
- la série $\sum_{n>0} \int_0^{+\infty} |u_n|$ converge, car c'est la série $\sum |a_n|$ qui converge.

Le théorème de convergence dominée s'applique donc ici et :

• la fonction : $x \mapsto S(x).e^{-x}$, est intégrable sur $[0,+\infty)$,

$$\bullet \int_0^{+\infty} S(x).e^{-x}.dx = \int_0^{+\infty} \left(\sum_{n=0}^{+\infty} u_n\right) = \sum_{n=0}^{+\infty} \left(\int_0^{+\infty} u_n\right) = \sum_{n=0}^{+\infty} \left(\frac{a_n}{n!}.\int_0^{+\infty} x^n.e^{-x}.dx\right) = \sum_{n=0}^{+\infty} \frac{a_n}{n!}.n! = \sum_{n=0}^{+\infty} a_n$$

21. On commence par remarquer que pour tout entier : n ≥ 1, la fonction sous l'intégrale est définie et continue sur le segment [0,n], donc toutes les intégrales envisagées existent.

Puis, en utilisant le changement de variable : $t = 1 - \frac{x}{n}$, on a :

$$\forall n \ge 1, \int_0^n \sqrt{1 + \left(1 - \frac{x}{n}\right)^n} . dx = -n. \int_1^0 \sqrt{1 + t^n} . dt = n. \int_0^1 \sqrt{1 + t^n} . dt.$$

En notant alors : \forall n \in N*, \forall t \in [0,1], $u_n(t) = \sqrt{1+t^n}$, on constate que :

- toutes les fonctions u_n sont définies, continues sur [0,1] donc intégrables sur ce segment,
- la suite (u_n) converge simplement sur [0,1] vers la fonction constante égale à 1,
- cette fonction constante est évidemment continue sur le segment,
- la fonction constante égale à 2 est continue donc intégrable sur le segment [0,2] et elle majore toutes les fonctions u_n .

Le théorème de convergence dominée s'applique et : $\lim_{n\to+\infty}\int_0^1\sqrt{1+t^n}.dt=\int_0^1(\lim_{n\to+\infty}\sqrt{1+t^n}).dt=\int_0^1dt=1$.

On en conclut que : $\int_0^n \sqrt{1 + \left(1 - \frac{x}{n}\right)^n} . dx \sim n$.

22. a. Posons: $\forall (x,t) \in \mathbb{R}^{+*2}, \ f(x,t) = \frac{\sin(t)}{e^{x,t} - 1}$.

Alors : $\forall \mathbf{x} \in \mathbb{R}^{+*}$, $t \mapsto f(\mathbf{x},t)$, est définie, continue sur \mathbb{R}^{+*} .

De plus : \forall x > 0, \forall t > 0, $f(x,t) = \frac{\sin(t)}{(1+x.t+o_0(t)-1)} = \frac{\sin(t)}{x.t+o_0(t)} \xrightarrow{t\to 0} \frac{1}{x}$, donc : $t\mapsto f(x,t)$, est prolongeable par continuité en 0.

Puis : $\forall x > 0, |t^2.f(x,t)| \le \frac{t^2}{e^{x.t}-1} \xrightarrow{t\to +\infty} 0$, par le théorème des croissances comparées et :

$$f(x,t) = o_{+\infty} \left(\frac{1}{t^2}\right).$$

Finalement F(x), pour tout : x > 0.

b. On peut intégrer par parties deux fois ou utiliser une exponentielle complexe :

$$\int_{0}^{+\infty} e^{-n.x.t} \cdot e^{i.t} \cdot dt = \left[\frac{e^{(-n.x+i).t}}{-n.x+i} \right]_{0}^{+\infty} = \frac{1}{n.x-i} = \frac{n.x+i}{(n.x)^{2}+1}, \text{ car } : \left| e^{(-n.x+i).t} \right| = e^{-n.x.t} \xrightarrow[t \to +\infty]{} 0.$$

On en déduit que : $\int_0^{+\infty} e^{-n.x.t} . \sin(t) . dt = \text{Im} \left(\int_0^{+\infty} e^{-n.x.t} . e^{i.t} . dt \right) = \frac{1}{(n.x)^2 + 1}$.

c. On commence par écrire que :

$$\forall \ \mathsf{x} > 0, \ \forall \ \mathsf{t} > 0, \ \frac{\sin(t)}{e^{x.t} - 1} = e^{-x.t}.\sin(t).\frac{1}{1 - e^{-x.t}} = e^{-x.t}.\sin(t).\sum_{k=0}^{+\infty} e^{-x.k.t} = \sum_{n=1}^{+\infty} \sin(t).e^{-x.n.t} \ , \ \mathsf{avec} : \ n = k+1.$$

On pose alors : $\forall x > 0$, $\forall n \in \mathbb{N}^*$, $\forall t > 0$, $u_n(t) = \sin(t).e^{-x.n.t}$, et :

- les fonctions u_n sont définies, continues sur \mathbb{R}^{+*} , intégrables sur \mathbb{R}^{+*} (question b).
- la série de fonctions $\sum_{n\geq 1}u_n$ converge simplement sur $\mathbb{R}^{+\star}$ vers f(x,.),
- la fonction somme de la série est continue sur R+*,
- la série $\sum_{n\geq 1}\int_0^{+\infty}\left|u_n\right|$ converge puisque : \forall x > 0, \forall n \in N*, $\int_0^{+\infty}\left|u_n\right|=\int_0^{+\infty}u_n=\frac{1}{1+n^2.x^2}\sum_{+\infty}^{\infty}\frac{1}{x^2}.\frac{1}{n^2}.$

Donc on peut intervertir série et intégrale et : $\forall x > 0$, $F(x) = \int_0^{+\infty} \sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} \int_0^{+\infty} u_n = \sum_{n=1}^{+\infty} \frac{1}{1+n^2 \cdot x^2}$.

Fonction intégrale dépendant d'un paramètre sur un intervalle quelconque.

23. On va fixer : y > 0, et on va noter : $\forall (x,t) \in \mathbb{R}^{+*} \times \mathbb{R}^{+*}$, $f(x,t) = \frac{e^{-xt} - e^{-yt}}{t}$.

Alors la fonction : $t \mapsto f(x,t)$, est définie, continue sur $]0,+\infty)$.

De plus, pour tout : x > 0, on a :

•
$$f(x,t) = \frac{1}{t} \cdot (1 - x \cdot t - (1 - y \cdot t) + o_0(t)) = (y - x) + o_0(1) \xrightarrow[t \to 0]{} (y - x),$$

et : $t \mapsto f(x,t)$, est prolongeable par continuité en 0,

•
$$t^2 \cdot f(x,t) = t \cdot e^{-x \cdot t} - t \cdot e^{-y \cdot t} \xrightarrow[t \to +\infty]{} 0$$
, car x et y sont strictement positifs, donc : $f(x,t) = o_{+\infty} \left(\frac{1}{t^2}\right)$.

Finalement : $t \mapsto f(x,t)$, est intégrable sur $]0,+\infty)$ et l'intégrale F(x,y) converge.

De plus:

•
$$\forall$$
 t > 0, $x \mapsto f(x,t)$, est de classe C¹ sur \mathbb{R}^{+*} et : $\frac{\partial f}{\partial x}(x,t) = -e^{-x.t}$,

•
$$\forall$$
 t > 0, $t \mapsto \frac{\partial f}{\partial x}(x,t)$, est continue par morceaux sur \mathbb{R}^{+*} ,

•
$$\forall$$
 a > 0, \forall $(x,t) \in [a,+\infty) \times \mathbb{R}^{+*}$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \le e^{-a.t} = \psi_a(t)$, et ψ_a est définie, continue par morceaux et

intégrable sur \mathbb{R}^{+*} (puisque prolongeable par continuité en 0 et comme $o_{+\infty}\left(\frac{1}{t^2}\right)$).

Donc:
$$x \mapsto F(x, y)$$
, est de classe \mathbb{C}^1 sur \mathbb{R}^{+*} , et: $\forall x > 0$, $\frac{\partial F}{\partial x}(x, y) = -\int_0^{+\infty} e^{-x \cdot t} \cdot dt = \left[\frac{e^{-x \cdot t}}{x}\right]_0^{+\infty} = -\frac{1}{x}$.

On en déduit que : $\exists \ C \in \mathbb{R}, \ \forall \ \mathbf{x} > \mathbf{0}, \ F(x,y) = \ln(x) + C$.

Comme de plus : F(y, y) = 0, on en déduit que : $\ln(y) + C = 0$, donc : $C = -\ln(y)$.

On en conclut que : $\forall (x, y) \in \mathbb{R}^{+*2}$, $F(x, y) = \ln(x) - \ln(y) = \ln\left(\frac{x}{y}\right)$.

24. a. On commence par noter : $\forall (x,t) \in \mathbb{R} \times [0,\pi], f(x,t) = \ln(x + \cos(t)).$

Pour x réel fixé, la fonction : $t \mapsto f(x,t)$, est définie sur $]0,\pi[$ si et seulement si : $x \ge 1$.

Si : x > 1, la fonction : $t \mapsto f(x,t)$, est alors définie et continue sur $[0,\pi]$ donc y est intégrable.

On pourrait montrer que la fonction : $t\mapsto \ln(1+\cos(t))$, est définie, continue et intégrable sur $[0,\pi[$, mais la question suggère de choisir : x>1, ce qu'on fera dans la suite.

On constate alors que:

- $\forall x \in]1,+\infty), t \mapsto f(x,t)$, est définie et intégrable sur $[0,\pi]$,
- f admet une dérivée partielle qui vaut : $\forall (x,t) \in]1,+\infty) \times [0,\pi], \frac{\partial f}{\partial x}(x,t) = \frac{1}{x + \cos(t)}$
- $\forall x \in]1,+\infty), t \mapsto \frac{\partial f}{\partial x}(x,t)$, est continue sur $[0,\pi]$,
- \forall t \in [0, π], $x \mapsto \frac{\partial f}{\partial x}(x,t)$, est continue sur]1,+ ∞),
- pour tout segment : [a,b] \subset]1,+ ∞), on a : \forall (x,t) \in [a,b] \times [0, π], $\left|\frac{\partial f}{\partial x}(x,t)\right| \leq \frac{1}{a-1} = \varphi_{a,b}(t)$, et $\varphi_{a,b}$ est

continue donc intégrable sur le segment $[0,\pi]$.

On peut ainsi en déduire que F est définie et de classe C¹ sur]1,+∞), et que :

$$\forall \mathbf{x} \in]1,+\infty), \ F'(x) = \int_0^{\pi} \frac{\partial f}{\partial x}(x,t).dt = \int_0^{\pi} \frac{dt}{x + \cos(t)}.$$

On peut alors effectuer le changement de variable monotone de classe C^1 : $u = \tan\left(\frac{t}{2}\right)$, et :

$$\forall \ \mathsf{x} \in \]\mathsf{1}, +\infty), \ F'(x) = \int_0^{+\infty} \frac{2.dt}{x.(1+u^2) + (1-u^2)} = \int_0^{+\infty} \frac{2.dt}{(x-1).u^2 + (x+1)} = \frac{2}{x-1}.\int_0^{+\infty} \frac{dt}{u^2 + \frac{x+1}{x-1}}.$$

Finalement :
$$\forall x \in]1,+\infty), \ F'(x) = \frac{2}{x-1}.\sqrt{\frac{x-1}{x+1}}. \ \arctan\left(u.\sqrt{\frac{x-1}{x+1}}\right) \Big|_{0}^{+\infty} = \frac{2}{\sqrt{x^2-1}}.\frac{\pi}{2} = \frac{\pi}{\sqrt{x^2-1}}.$$

- b. Il est immédiat que : $\forall x > 1$, $F(x) \pi . \ln(x) = \int_0^{\pi} \ln(x + \cos(t)) . dt \int_0^{\pi} \ln(x) . dt = \int_0^{\pi} \ln\left(1 + \frac{\cos(t)}{x}\right) . dt$.
- c. On peut alors encadrer la fonction sous l'intégrale pour obtenir :

$$\forall x > 1, \ \pi.\ln\left(1 - \frac{1}{x}\right) \le F(x) - \pi.\ln(x) \le \pi.\ln\left(1 + \frac{1}{x}\right),$$

et le théorème des gendarmes montre alors que : $\lim_{x \to +\infty} (F(x) - \pi . \ln(x)) = 0$.

Enfin la valeur de F' permet d'affirmer que :

$$\exists \ \mathsf{C} \in \mathbb{R}, \ \forall \ \mathsf{x} \in \]\mathsf{1}, +\infty), \ F(x) = \pi.\arg ch(x) + C = \pi.\ln(x + \sqrt{x^2 - 1}) + C \ .$$

Et comme alors : $\forall x > 1$, $F(x) - \pi . \ln(x) = \pi . \ln(x + \sqrt{x^2 - 1}) + C - \pi . \ln(x) = \pi . \ln(1 + \sqrt{1 - \frac{1}{x^2}}) + C$,

on en déduit que : $C = -\pi.\ln(2)$, soit :

$$\forall x \in]1,+\infty), F(x) = \pi.\arg ch(x) - \pi.\ln(2) = \pi.\ln\left(\frac{x + \sqrt{x^2 - 1}}{2}\right).$$

- 25. On pose, pour x réel : $f(x) = \int_0^{+\infty} e^{-t^2} .ch(2.x.t).dt$
 - a. On commence par noter : \forall $(x,t) \in \mathbb{R} \times \mathbb{R}^+$, $g(x,t) = e^{-t^2}.ch(2.x.t)$.

On constate alors que:

- $\forall x \in \mathbb{R}, t \mapsto g(x,t)$, est définie, continue (donc continue par morceaux) et intégrable sur \mathbb{R}^+ car : $t^2 \cdot g(x,t) = t^2 \cdot e^{-t^2} \cdot ch(2.x.t) \sim \frac{1}{2} \cdot \exp(-t^2 + 2.x.t + 2.\ln(t))$, qui tend vers 0 en $+\infty$,
- g admet une dérivée partielle sur $\mathbb{R} \times \mathbb{R}^+$: $\forall (x,t) \in \mathbb{R} \times \mathbb{R}^+$, $\frac{\partial g}{\partial x}(x,t) = 2.t.e^{-t^2}.sh(2.x.t)$,
- $\forall x \in \mathbb{R}, t \mapsto t \mapsto \frac{\partial g}{\partial x}(x,t)$, est définie, continue (donc continue par morceaux) sur \mathbb{R}^+ ,

- $\forall t \in \mathbb{R}^+, x \mapsto \frac{\partial g}{\partial x}(x,t)$, est définie et continue sur \mathbb{R} ,
- \forall [-a,+a] $\subset \mathbb{R}$, \forall $(x,t) \in$ [-a,+a] $\times \mathbb{R}^+$, $\left|\frac{\partial g}{\partial x}(x,t)\right| \leq 2.t.e^{-t^2}.sh(2.a.t) = \psi_a(t)$, avec ψ_a continue (donc

continue par morceaux) et intégrable sur R⁺ (pour la même raison qu'au-dessus).

Donc f est définie et de classe C^1 sur \mathbb{R} , et : $\forall \mathbf{x} \in \mathbb{R}$, $f'(x) = \int_0^{+\infty} \frac{\partial g}{\partial x}(x,t).dt = \int_0^{+\infty} e^{-t^2}.2.t.sh(2.x.t).dt$.

b. On peut alors procéder à une intégration par parties, en écrivant :

$$\forall \ \mathsf{x} \in \mathbb{R}, \ \forall \ \mathsf{a} \geq \mathsf{0}, \ \int_0^a e^{-t^2}.2.t.sh(2.x.t).dt = \left[-e^{-t^2}.sh(2.x.t)\right]_0^a + 2.x.\int_0^a e^{-t^2}.ch(2.x.t).dt \ .$$

Si on fait tendre a vers $+\infty$, on en déduit que : $\forall x \in \mathbb{R}$, f'(x) = 0 + 2.x.f(x), et f est solution sur \mathbb{R} de l'équation différentielle : y'-2.x.y=0.

c. Les solutions de cette équation différentielle sont les fonctions : $\forall x \in \mathbb{R}, y(x) = C.e^{x^2}$, avec : $C \in \mathbb{R}$.

Comme de plus on a : $f(0) = \int_0^{+\infty} e^{-t^2} . dt = \frac{\sqrt{\pi}}{2}$, on conclut que : $\forall x \in \mathbb{R}$, $f(x) = \frac{\sqrt{\pi}}{2} . e^{x^2}$.

d. On peut aussi écrire : $\forall x \in \mathbb{R}, \ f(x) = \frac{1}{2}.(\int_0^{+\infty} e^{-t^2}.e^{2.x.t}.dt + \int_0^{+\infty} e^{-t^2}.e^{-2.x.t}.dt)$, puisque les deux intégrales convergent, toujours pour les mêmes raisons qu'au-dessus.

$$\int_{0}^{+\infty} e^{-t^2}.e^{2.x.t}.dt = e^{x^2}.\int_{0}^{+\infty} \exp(-t^2 + 2.x.t - x^2).dt = e^{x^2}.\int_{0}^{+\infty} \exp(-(t-x)^2).dt = e^{x^2}.\int_{-x}^{+\infty} \exp(-u^2).du \,,$$
 avec le changement de variable (croissant de classe \mathbf{C}^1) : $u = t - x$.

De même : $\int_0^{+\infty} e^{-t^2}.e^{-2.x.t}.dt = e^{x^2}.\int_0^{+\infty} \exp(-(-t-x)^2).dt = -e^{x^2}.\int_{-x}^{-\infty} \exp(-u^2).du = e^{x^2}.\int_{-\infty}^{-x} \exp(-u^2).du$, avec cette fois le changement de variable (décroissant de classe \mathbf{C}^1) : u = -t - x.

Finalement : $\forall \mathbf{x} \in \mathbb{R}, \ f(\mathbf{x}) = \frac{1}{2}.(e^{\mathbf{x}^2}.\int_{-\mathbf{x}}^{+\infty}e^{-\mathbf{u}^2}.d\mathbf{u} + e^{\mathbf{x}^2}.\int_{-\infty}^{-\mathbf{x}}e^{-\mathbf{u}^2}.d\mathbf{u}) = \frac{e^{\mathbf{x}^2}}{2}.\int_{-\infty}^{+\infty}e^{-\mathbf{u}^2}.d\mathbf{u} = \frac{e^{\mathbf{x}^2}}{2}.\sqrt{\pi} = \frac{\sqrt{\pi}}{2}.e^{\mathbf{x}^2},$ soit bien le même résultat que précédemment.

- 26. a. On commence par noter : \forall (x,t) $\in \mathbb{R} \times [0,\pi]$, $f(x,t) = \ln(1-2.x.\cos(t)+x^2) = \ln((x-\cos(t))^2 + \sin^2(t))$. On constate alors que la quantité dans le ln est toujours positive et qu'elle s'annule si et seulement si :
 - $\sin(t) = 0$, c'est-à-dire : t = 0, ou : $t = \pi$, et :
 - cos(t) = x.

Donc dans le domaine indiqué, la quantité s'annule pour les couples (1, 0) et $(-1,\pi)$.

Autrement dit, si : $x \neq \pm 1$, la fonction : $t \mapsto f(x,t)$, est définie et continue sur le segment $[0,\pi]$, et donc F est définie au moins sur \mathbb{R} - $\{\pm 1\}$.

On peut remarquer que l'énoncé est ambigu car il ne demande pas explicitement d'examiner les cas où x vaut ± 1 qui conduisent à une intégrale généralisée, qui en fait est convergente dans les deux cas. Autrement dit, F est également définie en ± 1 .

- b. Pour x non nul, distinct de ±1, on a : $F(x) = \int_0^{\pi} [\ln(x^2) + \ln(\frac{1}{x^2} 2.\frac{1}{x}.\cos(t) + 1)].dt = 2.\pi.\ln(|x|) + F(\frac{1}{x}).$
- c. Soit $x \in \mathbb{R}$, $x \neq \pm 1$.

Alors:
$$F(-x) = -\int_{\pi}^{0} \ln(1+2.x.\cos(\pi-u)+x^2).du = \int_{0}^{\pi} \ln(1-2.x.\cos(u)+x^2).du = F(x)$$
,

avec le changement de variable : $t = \pi - u$.

F étant paire, et avec la question b, on peut se contenter de l'étudier sur [0,1[(mais pour le caractère C¹, on l'étudie sur]-1,+1[pour éviter tout problème en 0).

- d. On remarque ensuite que :
 - $\forall x \in [0,1[, t \mapsto f(x,t), \text{ est continue donc intégrable sur le segment } [0,\pi],$
 - f admet une dérivée partielle sur]-1,1[×[0, π] : \forall $(x,t) \in$]-1,1[×[0, π], $\frac{\partial f}{\partial x}(x,t) = \frac{2.x 2.\cos(t)}{x^2 2.x.\cos(t) + 1}$,

- $\forall x \in]-1,1[, t \mapsto \frac{\partial f}{\partial x}(x,t), \text{ est définie, continue (donc continue par morceaux) sur } [0,\pi],$
- \forall t \in [0, π], $x \mapsto \frac{\partial f}{\partial x}(x,t)$, est définie, continue sur]-1,1[,
- \forall [-a,a] \subset]-1,1[, \forall (x,t) \in [-a,a] \times [0, π], $\left|\frac{\partial f}{\partial x}(x,t)\right| \leq \frac{2.a+2}{(a-1)^2} = \psi_a(t)$, et ψ_a est définie, continue (donc

continue par morceaux) et donc intégrable sur le segment $[0,\pi]$.

Donc F est de classe C¹ sur]-1,+1[, et : \forall x \in]-1,+1[, $F'(x) = \int_0^{\pi} \frac{\partial f}{\partial x}(x,t).dt = \int_0^{\pi} \frac{2.x - 2.\cos(t)}{x^2 - 2.x.\cos(t) + 1}.dt$.

e. Pour calculer F'(x), on vérifie que les règles de Bioche ne donnent pas de résultat puis on utilise le changement de variable : $u = \tan\left(\frac{t}{2}\right)$.

On obtient alors : $\forall x \in]-1,+1[, F'(x) = 2.\int_0^{+\infty} \frac{u^2.(x+1) + (x-1)}{u^2.(x+1)^2 + (x-1)^2} \cdot \frac{2.du}{u^2+1}.$

On factorise alors par 2 et on décompose la fraction en éléments simples, ce qui donne (pour : $x \neq 0$) :

$$\frac{u^2.(x+1)+(x-1)}{u^2.(x+1)^2+(x-1)^2}\cdot\frac{1}{u^2+1}=\frac{1}{2.x}\cdot\frac{1}{u^2+1}+\frac{x^2-1}{2.x}\cdot\frac{1}{u^2.(x+1)^2+(x-1)^2}$$

Donc: $\forall x \in]-1,+1[, x \neq 0, F'(x) = \frac{2}{x}.\int_0^{+\infty} \frac{du}{u^2+1} + \frac{x^2-1}{2.x}.\int_0^{+\infty} \frac{du}{u^2.(x+1)^2+(x-1)^2}$, soit encore:

$$F'(x) = \frac{2}{x} \cdot \left[\arctan(u)\right]_0^{+\infty} + \frac{x^2 - 1}{2 \cdot x} \cdot \frac{1}{(x+1)^2} \cdot \frac{(x+1)}{(x-1)} \cdot \left[\arctan\left(u \cdot \frac{(x+1)}{(x-1)}\right)\right]_0^{+\infty} = \frac{\pi}{x} + \frac{1}{2 \cdot x} \cdot \left(-\frac{\pi}{2}\right) = 0.$$

Un calcul direct donne enfin : $F'(0) = \int_0^{\pi} -2 \cdot \cos(t) \cdot dt = 0$.

- f. F est donc constante sur l'intervalle]-1,+1[et comme elle est nulle en 0, elle est nulle sur]-1,+1[. Finalement :
 - $\forall x \in [-1,+1[, F(x) = 0,$
 - $\forall x \in (-\infty, -1[\cup]1, +\infty), F(x) = 2.\pi. \ln(|x|).$
- 27. a. Pour x réel fixé, la fonction de t sous l'intégrale est définie, continue et positive sur $]0, \frac{\pi}{2}]$.

En 0, on a: $(\sin(t))^x = \exp(x.\ln(\sin(t))) = \exp(x.\ln(t)).\exp(x.\ln(\frac{\sin(t)}{t})) \sim t^x$.

Donc I(x) est convergente si et seulement si : x > -1, et : $D =]-1,+\infty)$.

- b. Notons : $\forall (x,t) \in]-1,+\infty) \times]0, \frac{\pi}{2}], f(x,t) = (\sin(t))^x$.
 - $\forall x \in]-1,+\infty)$, $t \mapsto f(x,t)$, est définie, continue (donc continue par morceaux) et intégrable sur] $0,\frac{\pi}{2}$],
 - sur]-1,+ ∞)×]0, $\frac{\pi}{2}$], f admet des dérivées partielles à tout ordre par rapport à x et :

 $\forall p \in \mathbb{N}, \forall (x,t) \in]-1,+\infty) \times]0,\frac{\pi}{2}], \frac{\partial^p f}{\partial x^p}(x,t) = (\ln(\sin(t)))^p.(\sin(t))^x,$

- $\forall x \in]-1,+\infty), \forall p \in \mathbb{N}, t \mapsto \frac{\partial^p f}{\partial x^p}(x,t)$, est définie, continue (donc continue par morceaux) sur $]0,\frac{\pi}{2}]$,
- \forall t \in]0, $\frac{\pi}{2}$], \forall p \in N, $x \mapsto \frac{\partial^p f}{\partial x^p}(x,t)$, est définie et continue sur]-1,+ ∞),

•
$$\forall$$
 [a,b] \subset]-1,+ ∞), \forall p \in N, \forall (x,t) \in [a,b] \times]0, $\frac{\pi}{2}$], $\left|\frac{\partial^p f}{\partial x^p}(x,t)\right| \leq (\ln(\sin(t)))^p \cdot (\sin(t))^a = \psi_{a,b,p}(t)$,

et $\psi_{a,b,p}$ est définie, continue (donc par morceaux) et intégrable sur $]0,\frac{\pi}{2}]$, car pour : -1 < c < a, on a :

$$t^{-c}.(\ln(\sin(t)))^{p}.(\sin(t))^{a} \sim t^{a-c}.(\ln(\sin(t)))^{p} = t^{a-c}.(\ln(t) + \ln(\frac{\sin(t)}{t}))^{p} \sim t^{a-c}.(\ln(t))^{p},$$

et cette dernière quantité tend vers 0 en 0, du fait du théorème des croissances comparées (a-c>0).

Ce résultat montre alors que $\psi_{a,b,p}(t)$ est négligeable devant t^c en 0, fonction intégrable sur $]0,\frac{\pi}{2}]$.

On en déduit bien que I est de classe C^{∞} sur D.

c. Immédiatement :

•
$$I(0) = \int_0^{\frac{\pi}{2}} (\sin(t))^0 . dt = \frac{\pi}{2}$$
,

•
$$I(1) = \int_0^{\frac{\pi}{2}} (\sin(t))^1 . dt = 1$$
,

•
$$I(2) = \int_0^{\frac{\pi}{2}} (\sin(t))^2 . dt = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2.t)}{2} . dt = \frac{\pi}{4}$$

•
$$I(3) = \int_0^{\frac{\pi}{2}} (\sin(t))^3 . dt = \int_0^{\frac{\pi}{2}} (1 - \cos^2(t)) . (\sin(t)) . dt = \left[-\left(\cos(t) - \frac{\cos^3(t)}{3}\right) \right]_0^{\frac{\pi}{2}} = \frac{2}{3},$$

•
$$I(4) = \int_0^{\frac{\pi}{2}} (\sin(t))^4 . dt = \int_0^{\frac{\pi}{2}} \frac{1}{16} . [2 . \cos(4.t) - 4 . \cos(2.t) + 6] . dt = \frac{3}{8} . \frac{\pi}{2} .$$

d. On utilise une intégration par parties et les intégrales qui vont apparaître sont toutes convergentes.

On a donc:
$$\forall x > -1$$
, $I(x+2) = \int_0^{\frac{\pi}{2}} (\sin(t))^{x+2} . dt = [-\cos(t).\sin^{x+1}(t)]_0^{\frac{\pi}{2}} + (x+1).\int_0^{\frac{\pi}{2}} \cos^2(t).(\sin(t))^x . dt$,

soit:
$$I(x+2) = (x+1) \cdot \int_0^{\frac{\pi}{2}} (1-\sin^2(t)) \cdot (\sin(t))^x \cdot dt = (x+1) \cdot I(x) - (x+1) \cdot I(x+2)$$
,

et finalement : (x+2).I(x+2) = (x+1).I(x).

 $\text{e. Pour : } n \in \ \mathbb{N}^{\star}, \ \text{on a : } (n+2).I(n+2) = (n+1).I(n) \ , \ \text{et donc : } (n+2).I(n+2).I(n+1) = (n+1).I(n).I(n+1) \ .$

Donc la suite (n.I(n).I(n-1)) est constante à la valeur : $1.I(1).I(0) = 1.1.\frac{\pi}{2} = \frac{\pi}{2}$.

$$\mathsf{Donc}: \forall \ \mathsf{n} \in \ \mathsf{N}^\star, \ I(n).I(n-1) = \frac{\pi}{2.n} \ .$$

f. On peut d'abord noter que ${\it I}{\it }$ est décroissante et positive, puisque :

$$\forall t \in]0, \frac{\pi}{2}], \forall -1 < x < y, \text{ on a} : y.\ln(\sin(t)) \le x.\ln(\sin(t)), \text{ d'où} : 0 \le (\sin(t))^y \le (\sin(t))^x,$$

et en intégrant : $0 \le I(y) \le I(x)$.

Donc:
$$\forall x > 1$$
, $I(E(x) + 1).I(E(x) + 2) \le I(E(x) + 1)^2 \le I(x)^2 \le I(E(x))^2 \le I(E(x) - 1).I(E(x))$.

On en déduit que :
$$\frac{\pi}{2.(E(x)+2)} \le I(x)^2 \le \frac{\pi}{2.E(x)}$$
, et le théorème des gendarmes donne : $I(x) \sim \sqrt{\frac{\pi}{2.x}}$.

Si maintenant on considère :
$$-1 < x < 0$$
, alors : $g(x) = I(x) - \int_0^{\frac{\pi}{2}} t^x . dt = \int_0^{\frac{\pi}{2}} [(\sin(t))^x - t^x] . dt$.

Or:
$$\forall$$
 t \in]0, $\frac{\pi}{2}$], $t - \frac{t^3}{6} \le \sin(t)$, et: $0 < 1 - \frac{t^2}{6} \le \frac{\sin(t)}{t} \le 1$, comme le montrent des études de fonctions.

Puis x étant négatif, on en déduit que :

$$\forall \ \mathsf{t} \in \]0, \frac{\pi}{2}], \ 1 \le \left(\frac{\sin(t)}{t}\right)^x \le \left(1 - \frac{t^2}{6}\right)^x, \ \mathsf{et} : \ 0 \le (\sin(t))^x - t^x \le t^x \cdot \left(\left(1 - \frac{t^2}{6}\right)^x - 1\right).$$

Enfin, si on pose : $\forall t \in]0, \frac{\pi}{2}], \ \theta(t) = \left(1 - \frac{t^2}{6}\right)^x - 1 + \frac{x \cdot t^2}{6}, \text{ on a : } \theta'(t) = \frac{x \cdot t}{3} \cdot \left(1 - \left(1 - \frac{t^2}{6}\right)^{x-1}\right) \ge 0.$

Donc θ est croissante et étant nulle en 0, elle reste positive.

On a donc:
$$\left| I(x) - \int_0^{\frac{\pi}{2}} t^x . dt \right| \le -\int_0^{\frac{\pi}{2}} t^x . \frac{x . t^2}{6} . dt = -\frac{x}{6} . \int_0^{\frac{\pi}{2}} t^{x+2} . dt = -\left[\frac{x}{6} . \frac{t^{x+3}}{x+3} \right]_0^{\frac{\pi}{2}} = \frac{-x}{6 . (x+3)} . \left(\frac{\pi}{2} \right)^{x+3},$$

et cette dernière quantité tend vers une limite finie quand x tend vers -1.

Donc:
$$\forall -1 < x < 0$$
, $I(x) = g(x) + \int_0^{\frac{\pi}{2}} t^x dt = \left[\frac{t^{x+1}}{x+1} \right]_0^{\frac{\pi}{2}} + g(x) = \frac{1}{x+1} \cdot \left(\frac{\pi}{2} \right)^{x+1} + g(x)$.

Soit finalement : $I(x) \sim \frac{1}{x+1}$.

Fonction Γ .

- 28. a. A partir de la relation : \forall x > 0, $\Gamma(x+1) = x.\Gamma(x)$, et du fait que Γ est continue sur son domaine de définition $]0,+\infty)$, on en déduit que : $\lim_{x\to 0}(x.\Gamma(x)) = \lim_{x\to 0}\Gamma(x+1) = \Gamma(1) = 1$, donc : $\Gamma(x) \sim \frac{1}{x}$.
 - b. On va effectuer le changement de variable : $t = u^2$, qui est bien croissant de classe C¹ de]0,+ ∞) vers]0,+ ∞), et qui donne donc :

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} t^{-\frac{1}{2}} e^{-t} . dt = \int_0^{+\infty} \frac{1}{u} . e^{-u^2} . 2 . u . du = 2 . \int_0^{+\infty} e^{-u^2} . du = 2 . \frac{\sqrt{\pi}}{2} = \sqrt{\pi} .$$

Recherche d'équivalents.

29. a. On note :
$$\forall (x,t) \in \mathbb{R}^{+*} \times [0,\frac{\pi}{2}], \ f(x,t) = \frac{\cos(t)}{t+x}$$

On constate que :

- $\forall x \in \mathbb{R}^{+*}, t \mapsto f(x,t)$, est continue (donc continue par morceaux), intégrable sur le segment $[0, \frac{\pi}{2}]$,
- $\forall t \in [0, \frac{\pi}{2}], x \mapsto f(x,t)$, est continue sur \mathbb{R}^{+*} ,
- \forall [a,b] $\subset \mathbb{R}^{+*}$, \forall $(x,t) \in [a,b] \times [0,\frac{\pi}{2}]$, $\left| \frac{\cos(t)}{t+x} \right| \leq \frac{1}{a} = \varphi_{a,b}(t)$, et $\varphi_{a,b}$ est continue (donc continue par

morceaux) et intégrable sur $[0, \frac{\pi}{2}]$.

Donc F est définie et continue sur R^{+*}

b. Pour : x > 0,
$$G(x) = \int_0^{\frac{\pi}{2}} \frac{\cos(t)}{t+x} dt - \int_0^{\frac{\pi}{2}} \frac{\cos(t)}{x} dt = \int_0^{\frac{\pi}{2}} \frac{-t}{x(t+x)} \cdot \cos(t) dt$$
, et : $|G(x)| \le \frac{\pi}{2} \cdot \int_0^{\frac{\pi}{2}} \frac{dt}{x^2} = \frac{\pi^2}{4 \cdot x^2}$

On vient de montrer que : $G(x) = O\left(\frac{1}{x^2}\right)$, en $+\infty$.

Enfin:
$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{x} dt = \frac{1}{x} \cdot \left[\sin(t) \right]_0^{\frac{\pi}{2}} = \frac{1}{x}, \text{ donc}: F(x) = \frac{1}{x} + G(x) = \frac{1}{x} + O\left(\frac{1}{x^2}\right) = \frac{1}{x} + O\left(\frac{1}{x}\right), \text{ en } +\infty.$$

Soit: $F(x) \sim \frac{1}{x}$.

c. Puis pour :
$$x > 0$$
, $H(x) = \int_0^{\frac{\pi}{2}} \frac{\cos(t)}{t+x} dt - \int_0^{\frac{\pi}{2}} \frac{dt}{t+x} = \int_0^{\frac{\pi}{2}} \frac{(\cos(t)-1)}{t+x} dt$.

On constate alors que :
$$\forall x > 0, \ \forall t \in]0, \frac{\pi}{2}], \ \left|\frac{(\cos(t) - 1)}{t + x} - \frac{(\cos(t) - 1)}{t}\right| = \frac{x.(1 - \cos(t))}{t.(t + x)} \le \frac{x}{2}, \ \text{car} :$$

 \forall t > 0, $0 \le 1 - \cos(t) \le \frac{t^2}{2}$, comme le montre une simple étude de fonction.

Donc, les intégrales étant toutes convergentes, on a : $\forall x > 0$, $\left| H(x) - \int_0^{\frac{\pi}{2}} \frac{(\cos(t) - 1)}{t} . dt \right| \le \frac{\pi}{2} . x$, et :

 $\lim_{x\to 0} H(x) = \int_0^{\frac{\pi}{2}} \frac{(\cos(t)-1)}{t}.dt$, qui est une valeur finie, constante et indépendante de x.

Enfin:
$$\forall x > 0, \int_0^{\frac{\pi}{2}} \frac{dt}{t+x} = \left[\ln(x+t)\right]_0^{\frac{\pi}{2}} = \ln(x+\frac{\pi}{2}) - \ln(x)$$
.

On a donc : \forall x > 0, $F(x) = \ln(x + \frac{\pi}{2}) - \ln(x) + H(x)$, et comme le premier et le troisième terme ont une limite finie lorsque x tend vers 0, on conclut que : $F(x) \sim -\ln(x)$.