Algebre linéaire (corrigé niveau 2).

Espaces vectoriels, sous-espaces vectoriels, famill es libres et génératrices, dimension.
59. Tout d'abord : F, =Vect(sin), et la fonction sinus n'étant pas nulle, on a: dim(F,) =1, et sin constitue

60.

une base de Fo.

Puis: F, =Vect(f,, f,).

Or: 0 (Ay,A) OR?, (A,.f, +A.f, =0) = (O x OR, A,.sin(x) + A,.sin(x +1) = 0).

En particulier, pour : X =0, on obtient: A,.sin) =0, d'ou: A, =0, puisque : sin() # 0.
Et sinus n’étant pas la fonction nulle, on en déduit: A, =0.

Donc ( f,, f,) constitue une base de F, et: dim(F) =2.

Soit maintenant : n> 2.
On constate que : 0 0<k<n, O x OR, sin(x+ k) =cosk).sin(x) +sin(k).cos), et :

f, OVect(sin,cos).

D'ou: F, =Vect(f,, f;) OVect(f,,...,f,) =F, OVect(sin,cos), par stabilité par combinaison linéaire.
Et donc : dim(F,) = 2<dim(F,) < dim(Vect(sin,cos))< 2.

On en déduit que toutes les inégalités sont des égalités : dim(F,) = dim(F,) = dim(Vect(sin,cos))= 2,
et que : F, = F, =Vect(sin,cos).

En prime, (Sin,cos) est une base de Vect(sin,cos) (puisque génératrice et de cardinal 2), ce qu’on
pouvait bien sir montrer a la main, et de plus c’est aussi une base de F,.

L’idée est de voir quelles relations existent entre ces fonctions.
On peut tout d’abord constater que :

1-x _ 1-x
1+x J1-x2

Donc : F =Vect(f,, f,, f,, f,) OVect(f,, f,, f,) .

O x 0L f(X) = = £,(x) - f,(x) = (f, - f,)(x), soit: f, = f,—T,.

1+x _ 1+X

1-x  1-x2

De méme : 0 x 01-1,+1[, f,(x) =

=(f,+ f,)(x),soit: f,=f,+f,, et:

F OVect(f,, f,).

Mais comme par ailleurs on a évidemment : Vect(f,, f,) O Vect(f,, f,, f,, f,) = F, finalement :
F =Vect(f,, f,).

Enfin, la famille ( f5, f,) est libre car :
O(a,B)0R? (a.f,+B.f,=0)= (Ox0O]-1,+1], a.f,(x) + B.f,(x) =0).

Onendéduitque: a =0, avec: Xx=0, puis: =0, car: f, Z0.

Donc la famille ( f;, f,) est une base de F qui est donc de dimension 2.

Sous-espaces vectoriels supplémentaires, sommes dir ectes.

61.

Notons : G =Vect(sin,cos), H={f OE, f(0)= f[’—;j = £ (7).

Montrons alors que : O f OE, 0! (a,£,h) ORxRxH, f =a .sint S costh h.
Soitdonc: f OE.

Si une telle décomposition existe, alors :
0 x OR, f(x)=a.sin(x) + £.cos) + h(x), et :
f(0)=a0+£.1+h(0)=£+h(0),

f[i—g =ql+ 30+ h[gj =a+h(0),
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62.

f(7) = a0+ B.(-1) +h(7)) = -5 +h(0).

Donc : h(O)=—f(O);f(n),puis: a= f(g)——f(o);f(n),et: B=10)- f(o);f(”) = f(o);f(”).
Réciproquement, si on pose : g = [ f (%T) —M} Sin+ {M} cos,et: h=f —g, alors:
g Q0G,

+ho = £ -2 - TOZI,

NG = 1| 1)~ O] LOI o

fO-f(n) _fO+ ()
2 2 '

soit: h(0) = h[gj =h(7),donc: h O H.

h(r) = 1 (77) +

e g+h=f, par construction.

Conclusion : tout élément de E se décompose de fagon unique comme somme d’'un élément de G et
d’'un élément de H et ces deux sous-espaces vectoriels sont bien supplémentaires dans E.

On peut remarquer que : G = (X —a)®.R[X], c'est-a-dire 'ensemble des multiples de (X —a)°.

Or (X —a)® estdans F et G donc ces deux espaces ne sont pas supplémentaires.

En revanche, Ry[X] et G sont supplémentaires, puisque I'unique décomposition d’'un polynéme P de
R[X] suivant ces deux espaces est garanti par le théoréme sur la division euclidienne par (X —a)?.

Applications linéaires, projecteurs.

63.

64.

a. Notons tout d’abord que u est bien un endomorphisme de E, puis :

O f OE, (fOker)) = (f"=0) = (O(a,b) OR? OxOR, f(x)=ax+b) = (f OVect(f,, f,)),

avec: f,: x—>1,et f,: x> x.

Donc I'équivalence précédente garantit que : ker(u) =Vect(f,, f,), soit I'espace des fonctions affines.

Montrons que : Im(u) = E.

Puisque : Im(u) O E, il suffit de montrer 'inclusion inverse et pour cela soit: f OE.

En notant ¢ une primitive de f sur R, puis F une primitive de ¢ sur R, alors: ¢'= f , puis :
F'=¢'=f,et:f =u(F), soitdonc: f OIm(u).

Conclusion : Im(u) = E.

b. Les deux sous-espaces ne sont alors pas supplémentaires dans E puisque :
Im(u) n ker(u) = ker(u) = {0}.

a. Le probléme revient essentiellement & montrer que : Ot 0 [0,1], 4.(t —t*) O [0,1].

La fonction ¢ : t — 4.(t —t?), est continue sur [0,1], croissante sur {O%} décroissante sur [% ,1] elle

1 ) . , ,
estnulleenOetenletvautlen E : on a bien ainsi le résultat annoncé.

Pour: f OE, lafonction T(f) est alors définie et continue sur [0,1] comme primitive d’une fonction p

continue sur [0,1].
De plus, la linéarité de l'intégrale sur un segment garantit que T est linéaire.
Donc T est bien un endomorphisme de E.
b. Soit: f OE, telleque: T(f)=0.
Alors puisque la fonction sous l'intégrale est une fonction continue de t, T(f) est dérivable (et méme

de classe CY) sur[0,4] et: O x 0[0,1], T(f)'(x) = f (4.(x—x*)) =0.
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65.

66.

Or la fonction ¢ de la question a est surjective de [0,1] dans [0,1], donc :
Oy 0[0,1], 0x 0]0,1], y=4.(x-x%),etdonc: f(y)="f(4(x—x?)=0,et: f=0.
T est donc injectif.

T en revanche n’est pas surjectif car toute image par T est de classe C* sur [0,1], donc une fonction

. . 1 , L
qui n'est que continue sur [0,1] (comme : X+ |X——|) ne peut avoir d’antécédent par T .

a. Puisque la linéarité de A est immédiate, il suffit de démontrer que :

0P OR.JX], AP) O R.X].

Or c’est immédiat, car : O P 0O R.[X], A(P) OR[X], et: degA(P)) <degP(X +1) - P(X)) <n.

Donc on peut définir A ,, endomorphisme de R,[X] par :
O P OR,[X], A, (P) =A(P) = P(X +1) - P(X).
b. On peut remarquer par ailleurs, que : 0 P O R[X), (P #0) = (deg@A(P)) <degP)).
En effet, sionnote: P=a,.X" +...+a,,avec: k=0, a, Z0, alors :
A(P)=a,.(X +D)* +..+a, -[a, X" +...+a,] =ka X " +..,
polyndme de degré strictement inférieur a k..
Autrement dit: 0 O<k<n, A, (RJX]) O Rea[X].

Donc par récurrence : 0 0<k <n, A (Ri[X]) O Ry.[X], soit, pour : k=n : A? (Ry|X]) O Ro|X].

Et comme tout polyndme constant a une image nulle par A, on en déduit que : A':l(Rn[X]) = {0}.

Autrement dit : AT = 0.
c. Notons alors T I'endomorphisme défini sur R[X] par: O P OR[X], T(P) =P(X +1), et T,
'endomorphisme induit par T dans R,[X].
Alors: A, =T, —idg ;. quon notera: T, —id,,.
Puis : (T, —id,)"™ = A" =0, et comme T, et id, commutent, on a:

n+l

n
Z(k].(—l)”ﬂ‘k T =0, ce qui se traduit par :
k=0

n+l n
O P ORyX], Z(k}(—l)“ﬂ‘k T¥(P) =0, ou encore immédiatement :

k=0
n+l n
0P ORX], D a.P(X+k)=0,avec:00sksn+l, a :(—1)"+1‘k.(k],
k=0
puisque : 0 P OR,[X], 0 0sk<n+1, T¥(P) = P(X +k).

 Considérons X non nul dans E.
Puisque X et f(x) sont liés, il existe deux scalaires a et (3, non tous les deux nuls, tels que :

ax+(.f(x)=0.
Il n’est pas possible alors d’avoir : =0, sinon on aurait: @.x=0, donc: a =0.

B

On peut en déduire que : f(X) = —;.x, autrementdit: 0 x OE, xZ20,0A4, OK, f(x)=A,.X.
Considérons maintenant deux vecteurs X et y non nuls et formant une famille libre dans E.
Alors : O(A,,A,,4,.,) O K3 f(X)=A,.x, f(y) =AY, f(x+y)=A.,.(x+Yy).

Mais alors @ A,,, X+ A,, .
déduitque: A, =4, =A,.

Si maintenant X et y sont liés et non nuls, alors I'un est proportionnel a l'autre, par exemple :

y=f(x+y)=f(x)+ f(y) =4, x+A,.y, etlafamile (x,y) étant libre, on en

Oa OK+ y=ax,puis: f(X) =A%, f(y)=4,.y=A,.(ax)=ad,.y=f(ax)=a.f(x)=al.x.

Et comme a et x sont non nuls, on en déduit encore : A, :)Iy.
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67.

68.

69.

Conclusion : il existe un scalaire A telque: 0 x OE, x#0, f(X) =A.X, et comme cette égalité est
encore valable pour: x=0, f est finalement bien une homothétie.

 Si E est de dimension finie, on peut adapter la démonstration en reprenant la premiere partie pour les
vecteurs (€,,...,,) d'une base de E, et pour lesquelsonadonc: A, =...= A, =A (valeur fixe).
Maissiona:O1<i<n, f(e)=A.e, alors par combinaison linéaire c’est encore vrai pour tout vecteur
de E et f est bien une homothétie.

E est évidemment un C-espace vectoriel, et il estimmeédiat que 'ensemble F des suites complexes (a,,)
qui vérifient la relation de récurrence : 0 n ON, a,,, =a,,, + 6.a,, est un sous-espace vectoriel de E.
L’équation caractéristique associée est: r> —r —6 =0, dont les racines sont -2 et 3.
Donc F est un espace de dimension finie égale a 2, dont une base est formée des deux suites
géométriques ((-2)") et (3").
Pour montrer que p est un projecteur de E, il suffit de montrer que : 0 u 0O C", p(p(u)) = p(u) .
Or si pour U donnée, on note : v = p(u), alors image de Vv est la suite W telle que :

* Wy =Vo,

. Wl = Vl’

«OnON, W, =W, +6w,,
et on constate par récurrence double que : O n ON, w, =v,.
Donc : w=V, soit: p(p(u)) = p(u)

p est donc bien un projecteur de E, sur 'espace F , et le noyau de p est simplement le sous-espace
vectoriel des suites complexes dont les deux premiers termes sont nuls.

a. Les relations proposées donnent dans l'ordre :
Im(h) O Im(f) O Im(g) O Im(h), et donc I'égalité des trois images.

Eneffet: 0 yOIm(h), Ox OE, y=h(x) = fog(x) = f(g(x)),et: yOIm(f),
de méme pour les autres relations.
Puis : ker(h) O ker(g) O ker(f) O ker(h) , et a nouveau I'égalité des trois noyaux.

En effet, onademéme : 0 x OE, (g(X) =0) = (f(g(x)) =0) = (h(x) =0).
b.Oyva: f?=(goh)of =gog = g? = (hof)og = hoh =h?.
Puis: f° = g®oh”of = go(goh)o(hof )gofog = goh = f .
c.Onconstate que : 0 X OE,si: x=y+2z,avec: yOIm(f), zOker(f),alors: 0a OE, y=f(a).
Puis: f*(y)=f*(X)-f*@=f*(X)=Ff@=f(a)=y,et: z=x-y=x—-F*(X).
On vérifie alors que le seul couple (Y, z) ainsi trouvé convient, car :
« y= 1) 0Im(f),
e f(=f(x-f*(X)=f(X)- f>(x)=0, zOker(f)),
s y+z=X.
Bref, les deux espaces sont bien supplémentaires dans E.

a. Il estimmédiat que : O xJker(f), xOker(gof ), et donc : ker(f) U ker(gof) .
Puis, si: x[ker(gof ), alors : gof (x) =0, et: f(x)= fog(f(x))=f(0) =0, dou: xOker(f).
Donc on a aussi : ker(gof ) O ker(f ), d’ou I'égalité des deux noyaux.
De méme, on a évidemment : Im(gof) [J Im(g), et :
O ydim(g), OxUE, y=g(x) = g(fog(x)) = gof (g(x)) Ll Im(gof ),
d’ou I'égalité des deux images.
b. Pour: XOE,si: x=y+2z,avec: ylIIm(g), zOker(f), alors :
OalE, y=g(a),et: f(x)=1(g(a))+ (2.
Donc: f(x)=a+0,et: y=g(a) =g(f(x)), puis: z=x-gof (X).
Réciproquement, ce seul couple trouvé convient car :
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70.

71.

- yOim(g),
e f(2)=f(X)— f(gof (x)) = f(x)—(fog)(f(x))=f(x)-f(x)=0,soit: zOker(f),
s y+z=xX.

On a donc bien la supplémentarité des deux sous-espaces vectoriels dans E.

. Si E est de dimension finie, on peut évidemment en conclure que : g = f ™, par exemple parce

qualors f estsurjectif (O y OE, y= fog(y) = f(g(y))), donc bijectif par la théoreme du rang.
Plus généralement, le résultat est vrai si (et seulement si) f est bijectif.
Attention, en dimension infinie, le résultat est faux comme le montre le contrexemple :

E=R[X],0 P OE, f(P)=P,et: g(P)=Q,avec: 0 x DR, Q(x):jOXP(t).dt.

Il est clair que : fog =id_, etque f n’est pas bijectif.

. On a immédiatement : (gof )o(gof ) = go( fog)of = goid.of = gof ,

donc gof est un projecteur de E, sur Im(g) dans la direction ker(f).

.Soit: yOIm(f +g).

Alors:OXx OE, y=f(X)+g(x), et: yOIm(f)+Im(g).
On en déduit que :
rg(f +g) =dim(Im(f +g)) <dim(Im(f) +Im(g)) < dim(Im(f)) +dim(Im(g)) =rg(f) +rg(Q) .

. On peur écrire: f =(f +g)+(—g), donc en utilisant la question a pour les deux endomorphismes

qu’on vient de faire apparaitre, on en déduit que : rg(f) =rg((f +g) +(-g)) <rg(f +g) +rg(-9).
De plus : Im(=g) =Im(g),car: 0 yOIm(-g),0x OE, y=-g(x) =g(-x)dIm(Q).
L’autre inclusion étant aussi simple a établir, on a bien I'égalité, d’ou :
rg(-g) = dim(Im(-g)) = dim(Im(g)) =rg(g).
Donc: rg(f) <rg(f +g)+rg(g), eton conclut que : rg(f)-rg(g) <rg(f +g).
Mais f et g jouent des roles symétriques, donc on a aussi: (rg(g) —rg(f))<rg(f +9).

Enfin la valeur absolue qui apparait est I'une des deux différences que I'on vient d'évoquer, donc on en
déduit la deuxiéme inégalité demandée.

.» On a tout d’abord :

ker(u) O ker(vou), car : O xOker(u), vou(x) =v(u(x)) =v(0) =0, et :

ker(vou‘E.) 0 ker(vou) , car : O x[ ker(vou‘E.), x OFE, et: (vou‘E.)(x) =0=vou(x).
Donc : ker(u) + ker(vou‘E.) [ ker(vou) .
« Soit maintenant : x [ ker(vou).
Alors : O x, Oker(u), OXOE', X=X, + X', et: vou(x) =0 =vou(X,) +vou(x') = vou(x') .
Et comme : XOE', ona: 0=vou(x') = Vou‘E.(x') ,et: X0 ker(vou‘E.) :
Donc : x[ker(u) + ker(vou‘E.) , et on en déduit que : ker(vou) [J ker(u) + ker(vou‘E.) :
Finalement on a : ker(u) + ker(vou‘E.) = ker(vou) .
« Enfin, soit : xker(u) n ker(vou‘E.).
Alors : u(x) =0, et: XOE', donc x est nul puisque les deux espaces sont en somme directe.
Conclusion : ker(vou) = ker(u) O ker(vou‘E.).

. Soit: a,.u(€,) +...+a, ue,) =0, avec: (aj,....a,) DK~

Alors: u(a, €, +..+a,€,)=0,et: (a,€,+..+a,€,)Ukeru) n E".
Donc: a,€,+..+a,€,=0,puis: a, =...=a, =0, du fait de la liberté de la famille (€, ,...,€\).
La famille (u(€ ),...,u(€', )) est ainsi une famille libre d’éléments de ker(v) car :
D1<i<k, v(u(e,)) =vou(e,)=0.
On en déduit que : dim(ker)) > card(u(€’ ),....u(€' ) = k = dim(kergou.)) .
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c. En revenant a la somme directe de la question a, on en déduit que :
dim(kerfvou)) = dim(ker(u)) + dim(kerfou ..)) < dim(ker()) + dim(ker()) .
72. a.Soit: X OE.
Si on peut décomposer X en: x=y+2z,avec: yOOIm(f), et: zOker(g), alors:
OaOE, y=f(a),et: fog(x) = fog(y)+ fog(z) = fog(f(a))+ f(0)=f(a)=y,et: z=x-y.
Réciproquement, ce seul couple possible convient car :
« y= fog(x) OIm(f),
* 9(2) = 9(¥) —g(fog(x)) = g(x) —g(x) =0, et : z[Iker(g),
* y+2z=xX.
Donc Im(f) et ker(g) sont bien supplémentaires dans E.
b. On a évidemment : f(Im(g)) O Im(f), comme on le vérifie immédiatement.
Puis: O yOIm(f),Ox OE, y= f(x).
Ecrivons alors X sous la forme : x = g(x) + z, avec : zOker(f),
comme le garantit le résultat symétrique du résultat précédent.

Alors: y=f(x)=f(g(a))+ f(2) = f(g(a)) = f(b), avec: b=g(a) dIm(g), soit: yO f(Im(qg)).
D’ou 'égalité voulue.
73. a. Raisonnons par double inclusion :
« O xOu™u(F)), u(x) du(F), donc: O XOF, u(x) =u(x), et: x—x'=alker(), soit :
X =Xx'+a, avec: XOF, allkerQu).
« O xO(F +ker()), u(x) Du(F), et par définition : xOu™(u(F))).
b. « De méme : u(u™(F)) =F n Im(u).
En effet: 0 yOu(u™(F)), OxOu™(F), y=u(x) OIm(u), et puisque : xOu™(F), y=u(x)OF, et
onadonc: yOF nIm(u).
e Simaintenant: YOOF nIm(u),alors: Ox OE, y=u(x), et: y=u(x)JF, autrement dit :
xOu™(F), et finalement : yJu(u™(F)).
c. On a I'égalité proposée si et seulement si : F +ker(u) =F n Im(u).
On doit donc avoir :
 ker(u) O F, d’une part puisque : ker(u) O F + ker(u) = F n Im(u) O F , et d’autre part :
« FOF +keru) =F nIm(u) O Im(u) .
Réciproquement, supposons qu’on ait : ker(u) O F [ Im(u).
Alors : F +ker(u) =F =F n Im(u), et I'égalité voulue est bien vérifiée.

74. Puisque l'intégrale est une constante, il est clair que ¢ est un endomorphisme de F, par linéarité de
l'intégrale sur [0,1].

Deplus: 0 f OE, O x OR, ¢ f)(X) = f(x)—j:f(t).dt, et:
P (£)(X) = A F)(X) —j:ga(f)(t).dt = (%) —J'Olf(t).dt —j:(f ) —j;f).dt = f(x) —2.]3 f (t).dt +1.j;f .
Donc : ¢ (£)() = F(9) - [ f )0t =g £)(x).,

et @ est bien une projection vectorielle.

Puis: O f OE, (¢(f)=0)= (OxOR, f(x) :'[Olf ), et f est constante.

Réciproquement, toute fonction constante est bien 1-périodique sur Retsi: f =a OR, alors :
0 x OR, @(f)(x) = a—jola.dt —a-a=0,donc: f Oker(q).

Donc ker(g) est I'ensemble des fonctions constantes.
Montrons pour terminer que Im(¢) est 'ensemble des fonctions d’intégrale nulle (et 1-périodiques).
Pour cela:
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.0 f OE j:qp(f)(x).dx:j:(f(x)—Ef).dx:j:f(x).dx—l.j;f 0.

e 0 g OE, telle que : Eg=0,ona: qo(g)=g—Eg=g,et: gIm(g).
Donc Im(¢) est 'ensemble des fonctions de E d’intégrale nulle sur [0,1].

Matrices.
75. a. Puisque: f?=0,ona: Im(f)Oker(f).

76.

. Si on construit maintenant une base (e,,...,e ) de Im(f), qu'on appelle (e,

Comme de plus : rg(f)+dim(ker(f)) =4, on peut en déduire que rg(f) vaut 0,1 ou 2.

» Dansle cas ou: rg(f) =0, alors pour toute base % de E, mat(f, %) =0.

« Dans le cas ou : rg(f) =1, si on considére un vecteur de base de Im(f), noté e,, un antécédent de
ce vecteur noté e, et qu'on compléete e,, en une base (e,,e,,€,) de ker(f) (qui est de dimension :

4-1=3), alors la famille ainsi obtenue est une base de E car :
elle comporte 4 vecteurs et :

a.e+..+a,e, =0, entraine: a,.f(g)+...+a,.f(e,) =0, soit: a,.e, =0,0u: a, =0, puis la
liberté de la famille (e,,e;,€,) entraine la nullité des autres coefficients.

0 00O
_ 1 000
Dans cette base, la matrice de f est: mat(f, %)=
0 00O
0 00O
e Dansle cas ou: rg(f) =2, et en reprenant la méme démarche a partir de : Im(f) =ker(f), on
0 00O
0 0O
montre qu’on peut trouver une base % de E dans laquelle on a: mat(f, %) = 00 ol
0100

.,€,) des antécedents

e
de ces vecteurs, autrement dittelsque: 0 1<i<r r, f(e_., ) =€, etquon complete la famille libre
(e,...,6 ) enune base (e,...,e,_,) de ker(f), alors la famille ainsi obtenue est une base de E.
En effet, elle comporte bien n vecteurs et :

a.e +..+a,e =0, entraine (imagepar f): a,0+...+a,_, O0+a,_.,.€e +..+ta,e =0,etonen
déduit que les n—r derniers coefficients sont nuls.
Puis en revenant a I'égalité de départ, tous les autres coefficients sont nuls.

Or,r On—2.r,r I r
Enfin, dans la base % de E ainsi obtenue, ona: mat(f,%)=|0,,,, 0., .. O, 5,
0r,r 0n—2.r,r Or,r

. Raisonnons par double implication :

{=] si: ker(u) =Im(u), alors : rg(u) =dim(Im(u)) = dim(ker@)), et le théoréme du rang donne :
n=2rg(u).

Puis: 0 X OE, u?(x) =u(u(x)) =0, puisque : u(x) dIm(u), donc : u(x) Oker(u) .

[O]si: u®>=0,alors: Im(u) O ker(u) , et le théoréme du rang montre que :
dim(ker@)) = n-rg(u) =rg(u) =dim(Im(u)) .

Donc Im(u) et ker(u) sont égaux.

. La encore, par double implication :

[O] si la matrice de uu dans une base % de E vaut la matrice proposée, alors un produit par blocs
montre que : mat(u,.%)*> =0, et: u>=0.
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7.

78.

n
De plus rg(mat(u, %)) =rg((0 A)) =rg(A) = > etona: n=2rg(A) = 2rg(u).
Avec I'équivalence précédente, on en déduit que : ker(u) = Im(u).
[=] si: ker(u) =Im(u), alors n est pair puisque : n =dim(ker@)) + dim(Im(u)) = 2rg(u) .
En notant: n=2.p, puis (€....e,) une base de Im(u), on peut appeler (€p.1---,€,) une famille
telleque: 0 1<i<p, u(ep+i) =e.
La famille (€,...,€,) ainsi obtenue comporte n vecteurs et elle est libre car :
a, g +..+ta,e, =0, entraine (image par u) : a, 0+...+a,0+a e +..+a,e, =0,
donc les p derniers coefficients sont nuls, puis en revenant a I'égalité de départ, on en déduit la nullité
des autres coefficients.

0
Dans cette base % de E,ona: mat(u, 8 ) = (O (;’j , qui correspond bien a ce que I'on voulait.

Pour: P O E,, alors : di(e’xz.P(x)): —2xe7.P(x) +e ™ .P'(X), et: Q(X) = —2x.P(x) +P'(X).
X
On constate alors que si P est de degré k, alors P' est de degré au plus k-1 et 2.X.P de degré k +1.

Donc u,(P) estde degré k+1.

On en déduit que :
* U, estune application de E, dans E., et sa linéarité est immédiate,

* si P estnon nul, u,(P) est non nul puisque de degré supérieur a celui de P.

On en déduit que : ker(u,) ={O}.

Puis : dim(Im(u,)) =dim(E,) = n, avec le théoréme du rang.

Le plus simple alors est de déterminer ensuite la matrice de u,, dans les bases %, et % ., et pour cela :
cu,@=-2X,
eO1sksn-1, u (X*)=-2X "+ kX "

o 1 0 -~ O
-2 . el T
. o . . .0 _ _
D'ou: mat(u,, %, L )= Lo , matrice de taille (n+1)xn.
: .0
0O - - 0 =2

L'image est le sous-espace vectoriel de R,[X] engendré par les polyndmes (2.X ** —k.X*™), pour :
1<k<n-1, etetle polyndbme —2.X .

Pour cela, on note u I'application de R,[X] dans lui-méme qui a un polynéme P associe le polynéme Q
- 5 i X
défini par: Q=" P(')(—ij .

i 2
U est alors linéaire et c’est donc un endomorphisme de E.
De plus, si: degP) =k =0, alors :

00<i<Kk, deg{P“’[;D:k—i,et: Ok<i<n, P(”(i}o.

Donc Iimage de P est une somme de polynémes de degrés distincts (et du polynéme nul) : c’est donc un
polynéme non nul et U est donc injectif.

u est donc un automorphisme de R[X], et: 0 Q OR.[X], O! P OR|[X], Q=" P(”[gj .
i=0

Pour: n=3,et: Q= X% onpose: P=aX®*+h.X?+c.X +d,et:
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79.

80.

Lol zroorely ) o) (5)

soit : ZP‘”(%) =aXx?® +(b+§r.a}x2 +(c+b+g.a}x +(d+c+2b+64a).
i=0

En résolvant le systéme, on obtient: a=1,b = —ﬂ, c= —§, d= —1—5, soit: P= X3 —§.X2 —§.X —1—5.
3 4 4 4 4 4
Pour : n =1, la matrice A est nulle et donc n’est pas inversible.
Pour: n=22, A=U -1, ou U estla matrice ne comportant que des 1.
Alors : A> =U?-2U +1,, puisque les matrices commutent, et: A> =nU -2U +1_, soit :
A*=(n-2QU +1_=(n-2.(A+1 )+l =(n-2.A+(n-1.l.
Donc: A’ -(n—-2.A=(n-1. ,et: A(A-(n-2).1,)=(n-1.,.
2-n 1 1
1 .o :
A est donc inversible et : A™ =i.(A—(n—2).In) =L.U -1, =i. R,
n-1 n-1 n-1| : o1
1 1 2-n

a. En notant u I'endomorphisme canoniquement associé a A, et (e,...,e,) la base canonique de R",

alors: u(e)=e,, ..., u(e,_)=e, et:ule)=¢.
Par récurrence, on en déduit que :
Ol<ks<n-1,01<i<n-k,u“(g)=e,.et:0n-k+1<i<n, u“(e)=e, .
En particulier : u" = id, .
Ensuite : 0 k ON, avec: r =k (modn),ou:1<sr<n-1, A= A",
b. On obtient alors :

Ok ONy, M¥=(A+]1 n)k, et comme les deux matrices commutent, la formule du binbme s’applique.
k

k) .
Soit: M* = (A+1 )" 22( J.A‘ , que I'on peut réduire, si: k> n.
i

AR

n n - . . .
En particulier : M" = Z( ].A‘ - 1 .
i . . .
.

i=0

Calcul de déterminants.

81.

82.

Sur chaque ligne de det(A), on peut factoriser par (=1)' et sur chaque colonne par (-1)".

n

X 2
Donc : det(A) = (-1)= .(-1)'* .det(A) = det(A) .

Dans det(A), on remplace chaque ligne L; par: L', =L, +L,, pour: 1<i<n-1.
Chaque terme de la nouvelle ligne L', estalors égala 0,2 ou —2, pour: 1<i <n-1, et dans chacune

de ces lignes, on peut factoriser par 2, les termes restants étant des entiers.
Autrement dit : det(A) = 2" .det(A'), ou A" est une matrice constituée d’entiers égaux a 0, 1 ou —1.
Or il est immédiat par récurrence sur n gue le déterminant d’'une matrice de taille n uniqguement constituée
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83.

84.

de 0, 1 ou —1 est un entier relatif.
Donc on conclut alors que det(A) est bien un élément de Z, divisible par 2"*.

Raisonnons comme proposé par récurrence.
Si A est une matrice 1x1 vérifiant les hypothéses de I'énoncé, alors : |det(A)| = ‘au‘ =a, <l

Supposons maintenant le résultat vrai pour toute matrice de taille (n—1) X (n—1), et vérifiant les
hypothéses proposées, et soit A une matrice de taille nxn, telle que :

n
O1<i,jsn,O<a,,et:01<is<n, > a, <l
j=1
Développons alors det(A) suivant par exemple sa derniére ligne.
n n n
On obtient : det(A) =>"a, ;A , puis : [det(d) < > =>a,, .‘Dn’j
=1 =1 j=t
ou D, ; estle déterminant d’'une matrice A, ; extraite de A, de taille (n-1)x(n-1), dont les coefficients
sont positifs et tels que :
n n
Ol<isn-1, Y a, s> a,sl.
k=1 k=1
K# |
Autrement dit, toutes les matrices A, ; précédentes vérifient la méme propriété que A, et:

= ‘det(Amj )‘ <1, puis:

an,j

.‘An’ j

D1<j<n,|D,,

n
< Zan'j <1, soit le résultat voulu, ce qui termine la récurrence.
[

det®)| <> a, .‘Dn, j
i=1

a. Ce premier résultat s'obtient bien sdr par récurrence sur K.
Il est immédiat pour : k =0, et si on le suppose vrai pour une valeur k entiere donnée, alors :

AB*' =(AB").B=(B*.(A+kl,)).B=B* AB+kB“" =B*.(B.A+1 ) +kB""

= B A+ (k +1).Bk+l,
c'est-a-dire ce que I'on voulait obtenir, ce qui termine la récurrence.
b. On en déduit que :
Ok ON*, det(AB*) = det®B“.A+k.B¥) =detB*).det(A+k.l ), soit :
det®).(det(A) - det(A+k.l )) =0.

Supposons maintenant que : det(B) # 0.

Alors : O k O N*, det(A+k.l,) =det(A).

Or I'application f : x> det(A+x.l,), est polynomiale en x de degré n, ce qui peut se montrer par

récurrence, en utilisant deux étapes :

* toute matrice de taille nxn dont les coefficients sont des fonctions affines de X a un déterminant
qui est un polynébme en X de degré au plus n, a I'aide d'un développement par rapport a une ligne,

* c’est un polynéme de degré effectivement n et de coefficient dominant égal & 1 en développant par
rapport a la derniére colonne par exemple.
En effet, cela conduit a une somme de n produits :

- ceux formés d'un terme constant et d’'un déterminant qui est un polynéme de degré au plus n
d’aprés la premiere étape,

- celui correspondant au produit de (a, , + X) et du déterminant extrait de taille (n—1) x(n—1) qui est
par hypothése de récurrence un polynéme de degré (n—1) et de coefficient dominant égal a 1.
Donc: X+ det(A+ x| ,)—det(A), est également un polyndme de degré n et ne peut s’annuler en

une infinité de valeurs (ici les valeurs entieres : k [ N*).
Conclusion : on a bien : det(B) = 0.

c. Enfin, on a évidemment : tr(B) =tr (AB-B.A) =tr (AB) —-tr(B.A) =0.
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c-xXx b-x -+ b-x
85. a. Ecrivons la matrice proposée : M (a,b) —x.J = b S
- X
a-x -+ a—-Xx Cc—X
Pour son déterminant, on peut remplacer chaque colonne C, par C, —C,, et ceci, pour:2<k<n.

Le déterminant obtenu a tous ses termes constants sauf ceux de la premiere colonne qui sont des
fonctions affines de X.
Si maintenant on le développe suivant cette premiére colonne, on obtient une somme de n termes,

chacun étant un produit d’un terme constant (un cofacteur formé a partir des colonnes C,,...,C,) et

d’'une fonction affine de x.
Donc ¢(Xx) se présent bien comme une fonction affine de X, soit un polynédme en x de degré au plus

1, ce qui peut s’écrire : O(a,B) OK? O x OK, ¢(X) =a.x+pf.
Or: ¢(a) =(c—-a)", et: ¢(b) =(c—b)", car dans les deux cas, les déterminants sont triangulaires.
Dans le cas ou : a # b, on peut alors résoudre le systéme :

aa+pfB=(c-a)",

ab+p=(c-b)",

(c-a)" -(c-b)" b.c-a)" —a.(c—b)"

qui a pour solution : a = et: B=
a-b b-a
Enfin : detM (a,b)) =¢(0) = B = b-(C‘a)b::.(C—b) .

b. Pour cette question, on peut procéder par récurrence ou utiliser la formule théorique du déterminant.
Par exemple, on peut montrer que si A est une matrice nxn dont les coefficients sont des fonctions

affines de X, alors det(A) est un polynéme de degré au plus n en X, ce qui s'obtient sans probleme

avec une récurrence et un développement suivant une ligne ou une colonne.
La matrice M (&, X) étant alors une matrice du type décrit juste au-dessus, (/(X) apparait bien comme

un polynéme en X, donc une fonction continue en Xx.

Donc : det(M (a,a)) =¢/(a) = limy(x) = lim x.(c— a):( : :.(c -x)" |

Distinguons alors deux cas :
esi:a=c(=b), alors: detM(a,a)) =0,si: n=>2, et: detM(a,a)) =a,si: n=1.
 si: a#c, on utilise alors par exemple un développement limité a I'ordre 1, en posant: x=a+h.

On peut alors écrire : x.(c-a)" —a.(c-x)" =a.(c—-a)" +h.(c-a)" —a.(c—-a)" (1—Lj ,
c-a
soit: x.(c—-a)" —a.(c-x)" =h.(c-a)" +na.(c—a)"“.h+o(h),
et finalement : detMM (a,a)) =(c-a)" +na(c-a)"' =(c-a)"".(c+(n-1.a).
c+(n-Da a -+ - @
c a . .
4 e C :
c. On peut aussi écrire : detM (a, @) =|, . .~ [|= : a -. .. |, enadditionnant
o : : a
a N a C
c+t+(n-Da a - a c

toutes les colonnes a la premiere.
Puis on factorise la premiére colonne et on remplace chaque ligne L, par L, =L, , pour: 2<i<n.
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1 a a
: c—a O 0
Celadonne : detM (a,a)) =(c+(n-D.a)l: 0 . -. i |=(c+(n-D.a).(c-a)"".
ST
1 O 0 c-4

86. a. Comme suggéreé, la n-linéarité du déterminant, appliquée a la derniére colonne, permet d’écrire :

21 .- 12%4}21.--101@1210 - 0 1
N 1 AU Y N (0 BT S
On=22,D,=: "~. . 1 i+ - "~ 1 =} - . 0 :+nD_,=(Mn-)+nD, .
: .n 1 | n Qo [ “.on-1 1
1 -« - 11 11 1 n O - -~ 0 1
P D, _1 D, N .
b. On en déduitque : 0 n= 2, =—+ , d’'ou immédiatement par récurrence :
n n (n-1)!
,_<1.D &1 . _
On22, —0=%=+—t=%=+2=1+H,, etfinalement: D, = (1+H,).nl.
n oK I =k

Déterminants tridiagonaux.
87. En effectuant le développement habituel d’un tel déterminant, on constate que (A, (X)) vérifie la relation

de récurrence : 0 N> 3, det(A, (X)) = @+ x?).det(A (X)) — x*.det(A _, (X)).
En notant : D, = det(A, (X)) , on étudie alors I'équation caractéristique associée a la suite (D, ) qui est :
r’—@+x%).r+x>=0, et dont les racines sont 1 et x°.
* Si x estdistinctde +1, alors: O(a,8) OR%, 0 n=1, D, =a+ Bx>".
Or: D, =1+x*=a+pBx°,et: D, =1+x*+x* =a + S.x*, dou :
2 _ v2(n+D)
a::L—le = sz_l, et:0nz1, D, =2% 1fx2
+ Si x vaut £1, alors: 0(a,8)0R? 0 n=1, D, =a+n,
et on détermine a nouveau a et S avec D, et D,.
Pourcela: D,=2=a+f3,D,=3=a+28,dou:a=F=1et:0n=21, D, =n+1.

Déterminant de Vandermonde. ‘
88. a. On raisonne sur chaque colonne, en allant de la 2°™® a la derniére.

f, se présente sous laforme: Ox OR, f,(X) =Xx+a,, etsionremplace C, par C, —a,C,, la
colonne C,devient la deuxieme colonne du Vandermonde.
Puis f, estdelaforme: 0 x OR, f,(X)=x*+a,.x+b,, et on peut remplacer la colonne C, par

C,-a,.C, —b,.C,, cette colonne C, devenant la colonne numéro 3 du Vandermonde.

En répétant cette opération sur toutes les colonnes, on aboutit a I'égalité voulue (une démonstration
propre passerait par une récurrence).
b. Pour cela, on commence par écrire :

_ k (k _ _ _
O k ON*, cosk.x) = Re@™ ") =R Z( J cos (x).i! sin (x)j,
i=0
et dans cette somme on ne retient que les j pairs (pour garder la partie réelle), soit :
k k
H Kk _ {EJ Kk
cosk.xX) =, cosT2P(X).(-= P sin*P(x) = ) cos*P(x).(-1)".(L-cos*(x))",
o\ 2. P b0\ 2.p
ce qui montre bien que cosk.x) est un polyndéme en cos), de degré au plus k.
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Cherchons maintenant le coefficient de cos‘(x) dans cette somme.

2l 2
2 k 20 k
Il vaut : 2(2 p}(—l)p-(—l P = 2(2 pJ =2 qu'on peut retrouver en calculant 1+2)" et (L—-1)".

p=0 p=0
Donc cosk.x) est bien un polynéme en cos(x) de degré k et de coefficient dominant égal & 2.
Le déterminant A, est donc du type précédent, si on commence par factoriser 2“* dans chaque
colonne C,, et on fait apparaitre ainsi des polyndmes normalisés en cos(x) de degré k-1 pour
chaque colonne.

1 cos@) - cosf.a) 1 cos@) -+ cos'(a)
Donc: A, = =22.2" , et
1 cos@,,) -~ cosfa,,) 1 cos@,,) - cos'(a,,)
n.(n-1)

finalement: A,,, =2 2 . I_l (cosf@;) —cos@)).

I<i#j<n

Déterminants, applications linéaires et matrices.
89. a. Pour calculer det(f), il suffit de trouver la matrice de f dans une base de e/ (R).

90.

On peut choisir la base canonique, mais aussi une base plus adaptée, par exemple obtenue comme
réunion d’'une base de &§,(R) (matrices symétriques) et de o7 ,(R) (matrices antisymétriques) qui sont
deux sous-espaces supplémentaires dans e/ (R).

n(n+1)

Chaque vecteur de la premiére base (qui compte : dim(f,(R)) = — > éléments) est invariant par

f et chaque vecteur de la deuxiéme (qui en compte : dim(c7,(R)) = @) est changé en son

Opposeé.
. . nin+l ., ., . B

La matrice de f dans cette base est donc diagonale, elle compte ——— éléments diagonaux égaux
n(n-1

al, et % égaux a —1.

n.(n-1)
Donc le déterminant de f vaut: det(f) =(-1) 2

. Puisque f vérifie : f? =id .y ®), on adonc: det(f *) =1=(det(f))*, donc on pouvait prévoir qu’on

aurait : det(f) =+1.
Plus simplement, puisque I'application transposée est bijective, on savait que det(f) serait non nul.

. On peut montrer par récurrence que f est un polyndme en x de degré au plus n, avec la

proposition :
toute matrice de taille nxn dont les coefficients sont des fonctions affines de X a un déterminant qui
est un polynéme en X de degré au plus n.
Pour montrer que c’est un polynéme de degré effectivement n et de coefficient dominant égal a 1, on
peut le faire la encore par récurrence, en développant par rapport a la derniére colonne par exemple.
En effet, cela conduit a une somme de n produits :

« ceux formés d’'un terme constant et d’un déterminant qui est un polynéme de degré au plus n,

» celui correspondant au produit de (@, , +X) et du déterminant extrait de taille (n—1)x(n—1) qui est
par hypothése de récurrence un polyndme de degré (n—1) et de coefficient dominant égal a 1.

. Examinons les sommes par ligne de la matrice (A+ x.1,), et pour cela, on rappelle que le coefficient

générique de cette matrice est (& ; + X.d;) :
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91.

n n
01<i<n, Z‘aiyj + x.a'i’j‘ = Z‘a”‘ <‘a”‘ =a,<a,;+ x=‘ai’i + x.é'iyi‘, car: x=0.
E B
. f aune limite égale a +o en +o, comme polyndme.
Puis si f (0) était négatif, alors par continuité, f s’annulerait entre 0 et +co.
Or comme matrice a diagonale strictement dominante, (A+ X.I ) est toujours inversible et son

déterminant ne s’annule donc pas.
Conclusion : det(A) = f (0) > 0.

. On transforme I'égalité de départen: P.B= AP, puis: P.B- AR, =i.(AP, - R,.B).
Quitte a travailler coefficients par coefficients, on en déduit que les deux membres de I'égalité sont
nulsetdonc: P.B=AP,,et: AP, =P,.B.

. Les coefficients de la matrice (P, + x.P,) sont affines en x.

On peut alors montrer par récurrence que I'application proposée est polynomiale en X.
. La fonction polynomiale précédente n’est pas la fonction nulle puisqu’elle est non nulle pour : v=i (la

matrice (P, +i.P,) est inversible) donc elle admet un nombre fini de racines, et :
Oa OR, det(® +aP,)#0.
.Notons alors: Q=P, +aP,.
Cette matrice Q est réelle et inversible d’aprés la question c.
Deplus: P.B=AP,,et: AP,=P,.B.,donc: (R, +aP,).B=A(P, +aP,), soit: Q.B=AQ, et
finalement : B=Q™.AQ.
. On vient de montrer que si deux matrices réelles sont semblables par I'intermédiaire d’'une matrice
complexe, alors elles le sont aussi par I'intermédiaire d’une matrice réelle.
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