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Algèbre linéaire (corrigé niveau 2).  
 
Espaces vectoriels, sous-espaces vectoriels, famill es libres et génératrices, dimension.  
59. Tout d’abord : (sin)0 VectF = , et la fonction sinus n’étant pas nulle, on a : 1)dim( 0 =F , et sin  constitue 

une base de F0. 
Puis : ),( 101 ffVectF = . 

Or : ∀ ( 10 ,λλ ) ∈ �2, ( 0.. 1100 =+ ff λλ ) ⇒ (∀ x  ∈ �, 0)1sin(.)sin(. 10 =++ xx λλ ). 

En particulier, pour : 0=x , on obtient : 0)1sin(.1 =λ , d’où : 01 =λ , puisque : 0)1sin( ≠ . 

Et sinus n’étant pas la fonction nulle, on en déduit : 00 =λ . 

Donc ( 10 , ff ) constitue une base de 1F , et : 2)dim( 1 =F .  

Soit maintenant : 2≥n . 
On constate que : ∀ nk ≤≤0 , ∀ x  ∈ �, )cos().sin()sin().cos()sin( xkxkkx +=+ , et : 

cos)(sin,Vectf k ∈ . 

D’où : cos)(sin,),...,(),( 0101 VectFffVectffVectF nn ⊂=⊂= , par stabilité par combinaison linéaire. 

Et donc : 2cos))(sin,dim()dim(2)dim( 1 ≤≤≤= VectFF n . 

On en déduit que toutes les inégalités sont des égalités : 2cos))(sin,dim()dim()dim( 1 === VectFF n , 

et que : cos)(sin,1 VectFF n == . 

En prime, ( cossin, ) est une base de cos)(sin,Vect  (puisque génératrice et de cardinal 2), ce qu’on 

pouvait bien sûr montrer à la main, et de plus c’est aussi une base de nF . 

 
60. L’idée est de voir quelles relations existent entre ces fonctions. 

On peut tout d’abord constater que :  

  ∀ x  ∈ ]-1,1[, ))(()()(
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−= , soit : 431 fff −= .  

Donc : ),,(),,,( 4324321 fffVectffffVectF ⊂= . 

De même : ∀ x  ∈ ]-1,+1[, ))((
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+= , soit : 432 fff += , et :  

  ),( 43 ffVectF ⊂ . 

Mais comme par ailleurs on a évidemment : FffffVectffVect =⊂ ),,,(),( 432143 , finalement :  

  ),( 43 ffVectF = . 

Enfin, la famille ( 43, ff ) est libre car :  

  ∀ ( βα , ) ∈ �2, ( 0.. 43 =+ ff βα ) ⇒ (∀ x ∈ ]-1,+1[, 0)(.)(. 43 =+ xfxf βα ). 

On en déduit que : 0=α , avec : 0=x , puis : 0=β , car : 04 ≠f . 

Donc la famille ( 43, ff ) est une base de F  qui est donc de dimension 2. 

 
Sous-espaces vectoriels supplémentaires, sommes dir ectes. 

61. Notons : cos)(sin,VectG = , H = { f  ∈ E, )(
2
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Montrons alors que : ∀ f  ∈ E, ∃ ! ( h,,βα ) ∈ �×�×H, hf ++= cos.sin. βα  h. 

Soit donc : f  ∈ E. 
Si une telle décomposition existe, alors :  
  ∀ x  ∈ �, )()cos(.)sin(.)( xhxxxf ++= βα , et :    

  )0()0(1.0.)0( hhf +=++= ββα , 
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  )0()()1.(0.)( hhf +−=+−+= βπβαπ . 

Donc : 
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Réciproquement, si on pose : cos.
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= , donc : h  ∈ H . 

• fhg =+ , par construction. 

Conclusion : tout élément de E se décompose de façon unique comme somme d’un élément de G  et 
d’un élément de H  et ces deux sous-espaces vectoriels sont bien supplémentaires dans E.  
 

62. On peut remarquer que : .)( 2aXG −= �[X], c'est-à-dire l’ensemble des multiples de 2)( aX − . 

Or 2)( aX −  est dans F  et G  donc ces deux espaces ne sont pas supplémentaires. 

En revanche, �1[X] et G  sont supplémentaires, puisque l’unique décomposition d’un polynôme P  de 

�[X] suivant ces deux espaces est garanti par le théorème sur la division euclidienne par 2)( aX − .  
 

Applications linéaires, projecteurs. 
63. a. Notons tout d’abord que u  est bien un endomorphisme de E, puis :  

      ∀ f  ∈ E, ( )ker(uf ∈ ) ⇔ ( 0'' =f ) ⇔ (∃ ( ba, ) ∈ �2, ∀ x ∈ �, bxaxf += .)( ) ⇔ ( ),( 10 ffVectf ∈ ), 

    avec : 0f : 1ax , et 1f  : xx a . 

    Donc l’équivalence précédente garantit que : ),()ker( 10 ffVectu = , soit l’espace des fonctions affines. 

    Montrons que : Eu =)Im( . 

    Puisque : Eu ⊂)Im( , il suffit de montrer l’inclusion inverse et pour cela soit : f  ∈ E. 

    En notant ϕ  une primitive de f  sur �, puis F  une primitive de ϕ  sur �, alors : f='ϕ , puis :  

     fF == ''' ϕ , et : )(Fuf = , soit donc : )Im(uf ∈ . 

    Conclusion : Eu =)Im( . 
b. Les deux sous-espaces ne sont alors pas supplémentaires dans E puisque :  
      { }0)ker()ker()Im( ≠=∩ uuu . 
 

64. a. Le problème revient essentiellement à montrer que : ∀ t ∈ [0,1], ).(4 2tt − ∈ [0,1]. 

    La fonction ϕ : ).(4 2ttt −a , est continue sur [0,1], croissante sur 


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,0 , décroissante sur 
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
1,

2

1
, elle  

    est nulle en 0 et en 1 et vaut 1 en 
2

1
 : on a bien ainsi le résultat annoncé. 

    Pour : Ef ∈ , la fonction )( fT  est alors définie et continue sur [0,1] comme primitive d’une fonction µ 
    continue sur [0,1]. 
    De plus, la linéarité de l’intégrale sur un segment garantit que T  est linéaire. 
    Donc T  est bien un endomorphisme de E. 
b. Soit : Ef ∈ , telle que : 0)( =fT . 

    Alors puisque la fonction sous l’intégrale est une fonction continue de t, )( fT  est dérivable (et même  

    de classe C1) sur [0,1] et : ∀ x  ∈ [0,1], 0)).(4()()'( 2 =−= xxfxfT . 
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    Or la fonction ϕ de la question a est surjective de [0,1] dans [0,1], donc : 
      ∀ y  ∈ [0,1], ∃ x  ∈ |0,1], ).(4 2xxy −= , et donc : 0)).(4()( 2 =−= xxfyf , et : 0=f . 

    T  est donc injectif. 
    T  en revanche n’est pas surjectif car toute image par T  est de classe C1 sur [0,1], donc une fonction  

    qui n’est que continue sur [0,1] (comme : 
2

1−xx a ) ne peut avoir d’antécédent par T . 

 
65. a. Puisque la linéarité de ∆ est immédiate, il suffit de démontrer que : 

      ∀ P  ∈ �n[X], )(P∆  ∈ �n[X]. 

    Or c’est immédiat, car : ∀ P  ∈ �n[X], )(P∆  ∈�[X], et : nXPXPP ≤−+≤∆ ))()1(deg())(deg( .  

    Donc on peut définir n∆ , endomorphisme de �n[X] par :  

      ∀ P  ∈�n[X], )()1()()( XPXPPPn −+=∆=∆ .   

b. On peut remarquer par ailleurs, que : ∀ P  ∈ �[X), ( 0≠P ) ⇒ ( )deg())(deg( PP <∆ ). 

    En effet, si on note : 0.... aXaP k
k ++= , avec : k ≥ 0, 0≠ka , alors :  

      .....]....[...)1.()( 1
00 +=++−+++=∆ −k

k
k

k
k

k XakaXaaXaP ,  

    polynôme de degré strictement inférieur à k .  
    Autrement dit : ∀ nk ≤≤0 , n∆ (�k[X]) ⊂ �k-1[X]. 

    Donc par récurrence : ∀ nk ≤≤0 , k
n∆ (�n[X]) ⊂ �n-k[X], soit, pour : nk =  : n

n∆ (�n|X]) ⊂ �0|X]. 

    Et comme tout polynôme constant a une image nulle par ∆, on en déduit que : 1+∆n
n (�n[X]) = {0}. 

    Autrement dit : 01 =∆ +n
n . 

c. Notons alors T  l’endomorphisme défini sur �[X] par : ∀ P  ∈ �[X], )1()( += XPPT , et nT   

    l’endomorphisme induit par T  dans �n[X]. 
    Alors : ][ XRnn n

idT −=∆ , qu’on notera : nn idT − . 

    Puis : 0)( 11 =∆=− ++ n
n

n
nn idT , et comme nT  et nid  commutent, on a :  

      0.)1.(
1

0

1 =−







∑

+

=

−+
n

k

kkn T
k

n
, ce qui se traduit par : 
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    puisque : ∀ P  ∈ �n[X], ∀ 10 +≤≤ nk , )()( kXPPT k += . 
 

66. • Considérons x  non nul dans E. 
Puisque x  et )(xf  sont liés, il existe deux scalaires α  et β , non tous les deux nuls, tels que :  

  0)(.. =+ xfx βα . 

Il n’est pas possible alors d’avoir : 0=β , sinon on aurait : 0. =xα , donc : 0=α . 

On peut en déduire que : xxf .)(
α
β−= , autrement dit : ∀ x  ∈ E, 0≠x , ∃ xλ  ∈ K, xxf x .)( λ= . 

Considérons maintenant deux vecteurs x  et y  non nuls et formant une famille libre dans E. 

Alors : ∃ ( yxyx +λλλ ,, ) ∈ K3, xxf x .)( λ= , yyf y .)( λ= , ).()( yxyxf yx +=+ +λ . 

Mais alors : yxyfxfyxfyx yxyxyx ..)()()(.. λλλλ +=+=+=+ ++ , et la famille (x,y) étant libre, on en 

déduit que : yyxx λλλ == + . 

Si maintenant x  et y sont liés et non nuls, alors l’un est proportionnel à l’autre, par exemple : 

  ∃ α  ∈ K*, xy .α= , puis : xxf x .)( λ= , xxfxfyxyyf xyyy ..)(.).(..)..(.)( λαααλααλλ ====== . 

Et comme α  et x  sont non nuls, on en déduit encore : yx λλ = . 
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Conclusion : il existe un scalaire λ  tel que : ∀ x  ∈ E, 0≠x , xxf .)( λ= , et comme cette égalité est 

encore valable pour : 0=x , f  est finalement bien une homothétie. 

• Si E est de dimension finie, on peut adapter la démonstration en reprenant la première partie pour les 
vecteurs ( nee ,...,1 ) d’une base de E, et pour lesquels on a donc : λλλ === n...1  (valeur fixe). 

Mais si on a : ∀ ni ≤≤1 , ii eef .)( λ= , alors par combinaison linéaire c’est encore vrai pour tout vecteur 

de E et f  est bien une homothétie. 
 

67. E est évidemment un �-espace vectoriel, et il est immédiat que l’ensemble F  des suites complexes ( nα ) 

qui vérifient la relation de récurrence : ∀ n  ∈ �, nnn ααα .612 += ++ , est un sous-espace vectoriel de E. 

L’équation caractéristique associée est : 062 =−− rr , dont les racines sont 2−  et 3. 
Donc F est un espace de dimension finie égale à 2, dont une base est formée des deux suites 
géométriques ( n)2(− ) et ( n3 ). 

Pour montrer que p  est un projecteur de E, il suffit de montrer que : ∀ u  ∈ �n, )())(( upupp = . 

Or si pour u  donnée, on note : )(upv = , alors l’image de v  est la suite w  telle que : 

  • 00 vw = , 

  • 11 vw = , 

  • ∀ n  ∈ �, nnn www .612 += ++ ,  

et on constate par récurrence double que : ∀ n  ∈ �, nn vw = .  

Donc : vw = , soit : )())(( upupp =   

p  est donc bien un projecteur de E, sur l’espace F , et le noyau de p  est simplement le sous-espace 
vectoriel des suites complexes dont les deux premiers termes sont nuls.  
 

68. a. Les relations proposées donnent dans l’ordre : 
      )Im()Im()Im()Im( hgfh ⊂⊂⊂ , et donc l’égalité des trois images. 

    En effet : ∀ )Im(hy ∈ , ∃ x  ∈ E, ))(()()( xgfxfogxhy === , et : )Im( fy ∈ ,  
    de même pour les autres relations. 
    Puis : )ker()ker()ker()ker( hfgh ⊃⊃⊃ , et à nouveau l’égalité des trois noyaux. 

    En effet, on a de même : ∀ x  ∈ E, ( 0)( =xg ) ⇒ ( 0))(( =xgf ) ⇒ ( 0)( =xh ).  

b. O y va : 222 )()( hhohoghofggogofgohf ====== . 

    Puis : fgohgofoghofogohgoofohgf ==== )()(225 . 

c. On constate que : ∀ x  ∈ E, si : zyx += , avec : )Im( fy ∈ , )ker( fz ∈ , alors : ∃ a  ∈ E, )(afy = . 

    Puis : yafafxfzfxfyf ====−= )()()()()()( 54444 , et : )(4 xfxyxz −=−= . 
    On vérifie alors que le seul couple ( zy, ) ainsi trouvé convient, car : 

      • )Im()(4 fxfy ∈= , 

      • 0)()())(()( 54 =−=−= xfxfxfxfzf , )ker( fz ∈ ), 

      • xzy =+ . 
    Bref, les deux espaces sont bien supplémentaires dans E. 
 

69. a. Il est immédiat que : ∀ )ker( fx ∈ , )ker(gofx ∈ , et donc : )ker()ker( goff ⊂ . 

    Puis, si : )ker(gofx ∈ , alors : 0)( =xgof , et : 0)0())(()( === fxffogxf , d’où : )ker( fx ∈ . 

    Donc on a aussi : )ker()ker( fgof ⊂ , d’où l’égalité des deux noyaux. 

    De même, on a évidemment : )Im()Im( ggof ⊂ , et : 

      ∀ )Im(gy ∈ , ∃ Ex ∈ , )Im())(())(()( gofxggofxfoggxgy ∈=== , 
    d’où l’égalité des deux images.  
b. Pour : Ex ∈ , si : zyx += , avec : )Im(gy ∈ , )ker( fz ∈ , alors :  

      ∃ Ea ∈ , )(agy = , et : )())(()( zfagfxf += . 

    Donc : 0)( += axf , et : ))(()( xfgagy == , puis : )(xgofxz −= . 
    Réciproquement, ce seul couple trouvé convient car : 
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      • )Im(gy ∈ , 

      • 0)()())()(()())(()()( =−=−=−= xfxfxffogxfxgoffxfzf , soit : )ker( fz ∈ , 

      • xzy =+ . 
    On a donc bien la supplémentarité des deux sous-espaces vectoriels dans E.   
c. Si E est de dimension finie, on peut évidemment en conclure que : 1−= fg , par exemple parce  

    qu’alors f  est surjectif (∀ y  ∈ E, ))(()( ygfyfogy == ), donc bijectif par la théorème du rang. 

    Plus généralement, le résultat est vrai si (et seulement si) f  est bijectif. 
    Attention, en dimension infinie, le résultat est faux comme le montre le contrexemple : 

      E = �[X], ∀ P  ∈ E, ')( PPf = , et : QPg =)( , avec : ∀ x  ∈ �, ∫=
x

dttPxQ
0

).()( . 

    Il est clair que : Eidfog = , et que f  n’est pas bijectif. 

d. On a immédiatement : gofofgoidoffoggogofogof E === )()()( ,  

    donc gof  est un projecteur de E, sur )Im(g  dans la direction )ker( f . 
 

70. a. Soit : )Im( gfy +∈ . 

    Alors : ∃ x  ∈ E, )()( xgxfy += , et : )Im()Im( gfy +∈ . 
    On en déduit que :  
      )()())dim(Im())dim(Im())Im()dim(Im())dim(Im()( grgfrggfgfgfgfrg +=+≤+≤+=+ .  

b. On peur écrire : )()( ggff −++= , donc en utilisant la question a pour les deux endomorphismes  

    qu’on vient de faire apparaître, on en déduit que : )()())()(()( grggfrgggfrgfrg −++≤−++= . 

    De plus : )Im()Im( gg =− , car : ∀ )Im( gy −∈ , ∃ x  ∈ E, )Im()()( gxgxgy ∈−=−= . 
    L’autre inclusion étant aussi simple à établir, on a bien l’égalité, d’où :  
      )())dim(Im())dim(Im()( grggggrg ==−=− . 

    Donc : )()()( grggfrgfrg ++≤ , et on conclut que : )()()( gfrggrgfrg +≤− . 

    Mais f  et g  jouent des rôles symétriques, donc on a aussi : )())()(( gfrgfrggrg +≤− . 
    Enfin la valeur absolue qui apparaît est l’une des deux différences que l’on vient d’évoquer, donc on en    
    déduit la deuxième inégalité demandée. 
 

71. a. • On a tout d’abord : 
      )ker()ker( vouu ⊂ , car : ∀ )ker(ux ∈ , 0)0())(()( === vxuvxvou , et : 

      )ker()ker( ' vouvou E ⊂ , car : ∀ )ker( 'Evoux ∈ , x  ∈ E’, et : )(0))(( ' xvouxvou E == . 

    Donc : )ker()ker()ker( ' vouvouu E ⊂+ . 

    • Soit maintenant : )ker(voux ∈ . 

    Alors : ∃ )ker(0 ux ∈ , ∃ '' Ex ∈ , '0 xxx += , et : )'()'()(0)( 0 xvouxvouxvouxvou =+== . 

    Et comme : '' Ex ∈ , on a : )'()'(0 ' xvouxvou E== , et : )ker(' 'Evoux ∈ . 

    Donc : )ker()ker( 'Evouux +∈ , et on en déduit que : )ker()ker()ker( 'Evouuvou +⊂ . 

    Finalement on a : )ker()ker()ker( ' vouvouu E =+ . 

    • Enfin, soit : )ker()ker( 'Evouux ∩∈ . 

    Alors : 0)( =xu , et : 'Ex ∈ , donc x  est nul puisque les deux espaces sont en somme directe. 

    Conclusion : )ker()ker()ker( 'Evouuvou ⊕= . 

b. Soit : 0)'(....)'(. 11 =++ kk eueu αα , avec : ( kαα ,...,1 ) ∈ Kk.  

    Alors : 0)'....'.( 11 =++ kk eeu αα , et : ')ker()'....'.( 11 Euee kk ∩∈++ αα . 

    Donc : 0'....'. 11 =++ kk ee αα , puis : 0...1 === kαα , du fait de la liberté de la famille ( kee ',...,'1 ). 

    La famille ( )'(),...,'( 1 keueu ) est ainsi une famille libre d’éléments de )ker(v  car : 

      ∀ ki ≤≤1 , 0)'())'(( == ii evoueuv . 

    On en déduit que : ))dim(ker())'(),...,'(())dim(ker( '1 Ek voukeueucardv ==≥ .  
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c. En revenant à la somme directe de la question a, on en déduit que : 
      ))dim(ker())dim(ker())dim(ker())dim(ker())dim(ker( ' vuvouuvou E +≤+= . 

72. a. Soit : x  ∈ E. 
    Si on peut décomposer x  en : zyx += , avec : )Im( fy ∈ , et : )ker(gz ∈ , alors : 

      ∃ a  ∈ E, )(afy = , et : yaffaffogzfogyfogxfog ==+=+= )()0())(()()()( , et : yxz −= . 
    Réciproquement, ce seul couple possible convient car : 
      • )Im()( fxfogy ∉= , 

      • 0)()())(()()( =−=−= xgxgxfoggxgzg , et : )ker(gz ∈ , 

      • xzy =+ . 

    Donc )Im( f  et )ker(g  sont bien supplémentaires dans E.  

b. On a évidemment : )Im())(Im( fgf ⊂ , comme on le vérifie immédiatement. 

    Puis : ∀ )Im( fy ∈ , ∃ x  ∈ E, )(xfy = . 

    Ecrivons alors x  sous la forme : zxgx += )( , avec : )ker( fz ∈ ,  
    comme le garantit le résultat symétrique du résultat précédent. 
    Alors : )())(()())(()( bfagfzfagfxfy ==+== , avec : )Im()( gagb ∈= , soit : ))(Im(gfy ∈ . 
    D’où l’égalité voulue. 
 

73. a. Raisonnons par double inclusion : 
      • ∀ ))((1 Fuux −∈ , )()( Fuxu ∈ , donc : ∃ Fx ∈' , )'()( xuxu = , et : )ker(' uaxx ∈=− , soit :  

      axx += ' , avec : Fx ∈' , )ker(ua ∈ . 

      • ∀ ))ker(( uFx +∈ , )()( Fuxu ∈ , et par définition : ))((1 Fuux −∈ ).  

b. • De même : )Im())(( 1 uFFuu ∩=− . 

    En effet : ∀ ))(( 1 Fuuy −∈ , ∃ )(1 Fux −∈ , )Im()( uxuy ∈= , et puisque : )(1 Fux −∈ , Fxuy ∈= )( , et     

    on a donc : )Im(uFy ∩∈ . 

    • Si maintenant : )Im(uFy ∩∈ , alors : ∃ x  ∈ E, )(xuy = , et : Fxuy ∈= )( , autrement dit :  

      )(1 Fux −∈ , et finalement : ))(( 1 Fuuy −∈ .  

c. On a l’égalité proposée si et seulement si : )Im()ker( uFuF ∩=+ . 
    On doit donc avoir :  
      • Fu ⊂)ker( , d’une part puisque : FuFuFu ⊂∩=+⊂ )Im()ker()ker( , et d’autre part : 

      • )Im()Im()ker( uuFuFF ⊂∩=+⊂ . 

    Réciproquement, supposons qu’on ait : )Im()ker( uFu ⊂⊂ . 

    Alors : )Im()ker( uFFuF ∩==+ , et l’égalité voulue est bien vérifiée.  
 

74. Puisque l’intégrale est une constante, il est clair que φ  est un endomorphisme de F, par linéarité de 
l’intégrale sur [0,1]. 

De plus : ∀ f  ∈ E, ∀ x  ∈ �, ∫−=
1

0
).()())(( dttfxfxfφ , et : 

  ∫∫∫ ∫∫∫ +−=−−−=−=
1

0

1

0

1

0

1

0

1

0

1

0

2 .1).(.2)().)(().()().)(())(())(( fdttfxfdtftfdttfxfdttfxfxf φφφ . 

Donc : ))(().()())((
1

0

2 xfdttfxfxf φφ =−= ∫ , 

et φ est bien une projection vectorielle. 

Puis : ∀ f  ∈ E, ( 0)( =fφ ) ⇒ (∀ x ∈ �, ∫=
1

0
)( fxf ), et f  est constante. 

Réciproquement, toute fonction constante est bien 1-périodique sur � et si : af =  ∈ �, alors : 

  ∀ x  ∈ �, 0.))((
1

0
=−=−= ∫ aadtaaxfφ , donc : )ker(φ∈f . 

Donc )ker(φ  est l’ensemble des fonctions constantes. 

Montrons pour terminer que )Im(φ  est l’ensemble des fonctions d’intégrale nulle (et 1-périodiques). 
Pour cela : 
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  • ∀ f  ∈ E, 0.1).().)(().)((
1

0

1

0

1

0

1

0

1

0
=−=−= ∫∫∫ ∫∫ fdxxfdxfxfdxxfφ . 

  • ∀ g  ∈ E, telle que : 0
1

0
=∫ g , on a : gggg =−= ∫

1

0
)(φ , et : )Im(φ∈g . 

Donc )Im(φ  est l’ensemble des fonctions de E d’intégrale nulle sur [0,1]. 
 

Matrices. 
75. a. Puisque : 02 =f , on a : )ker()Im( ff ⊂ . 

    Comme de plus : 4))dim(ker()( =+ ffrg , on peut en déduire que )( frg  vaut 0,1 ou 2. 

    • Dans le cas où : 0)( =frg , alors pour toute base B de E, ,( fmat B) = 0. 

    • Dans le cas où : 1)( =frg , si on considère un vecteur de base de )Im( f , noté 2e , un antécédent de  

    ce vecteur noté 1e  et qu’on complète 2e , en une base ( 432 ,, eee ) de )ker( f  (qui est de dimension :  

     314 =− ), alors la famille ainsi obtenue est une base de E car : 
      elle comporte 4 vecteurs et : 
      0..... 4411 =++ ee αα , entraîne : 0)(....)(. 4411 =++ efef αα , soit : 0. 11 =eα , ou : 01 =α , puis la  

      liberté de la famille ( 432 ,, eee ) entraîne la nullité des autres coefficients. 

    Dans cette base, la matrice de f  est : ,( fmat B



















=

0000

0000

0001

0000

) . 

    • Dans le cas où : 2)( =frg , et en reprenant la même démarche à partir de : )ker()Im( ff = , on  

    montre qu’on peut trouver une base B de E dans laquelle on a : ,( fmat B



















=

0010

0001

0000

0000

) . 

b. Si on construit maintenant une base ( ree ,...,1 ) de )Im( f , qu’on appelle ( nrn ee ,...,1+− ) des antécédents  

    de ces vecteurs, autrement dit tels que : ∀ ri ≤≤1  r, iirn eef =+− )( , et qu’on complète la famille libre       

    ( ree ,...,1 ) en une base ( rnee −,...,1 ) de )ker( f , alors la famille ainsi obtenue est une base de E.   

    En effet, elle comporte bien n vecteurs et : 
      0..... 11 =++ nn ee αα , entraîne (image par f ) : 0.....0....0. 111 =+++++ +−− rnrnrn ee αααα , et on en  

    déduit que les rn −  derniers coefficients sont nuls. 
    Puis en revenant à l’égalité de départ, tous les autres coefficients sont nuls. 

    Enfin, dans la base B de E ainsi obtenue, on a : ,( fmat B

















=

−

−−−−

−

rrrrnrr

rrnrnrnrrn

rrrnrr I

,,.2,

,.2.2,.2,.2

,.2,

000

000

00

) . 

 
76. a. Raisonnons par double implication : 

    {⇒] si : )Im()ker( uu = , alors : ))dim(ker())dim(Im()( uuurg == , et le théorème du rang donne :  

      )(.2 urgn = . 

    Puis : ∀ x  ∈ E, 0))(()(2 == xuuxu , puisque : )Im()( uxu ∈ , donc : )ker()( uxu ∈ . 

    [⇐] si : 02 =u , alors : )ker()Im( uu ⊂ , et le théorème du rang montre que :  

      ))dim(Im()()())dim(ker( uurgurgnu ==−= . 

    Donc )Im(u  et )ker(u  sont égaux.  
b. Là encore, par double implication : 
    [⇐] si la matrice de uu  dans une base B de E vaut la matrice proposée, alors un produit par blocs  

    montre que : ,(umat B 0)2 = , et : 02 =u . 
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    De plus ,(( umatrg B
2

)())0(())
n

ArgArg === , et on a : )(.2)(.2 urgArgn == . 

    Avec l’équivalence précédente, on en déduit que : )Im()ker( uu = . 

    [⇒] si : )Im()ker( uu = , alors n  est pair puisque : )(.2))dim(Im())dim(ker( urguun =+= . 

    En notant : pn .2= , puis ( pee ...,1 ) une base de )Im(u , on peut appeler ( np ee ...,1+ ) une famille  

    telle que : ∀ pi ≤≤1 , iip eeu =+ )( . 

    La famille ( nee ...,1 ) ainsi obtenue comporte n  vecteurs et elle est libre car : 

      0..... 11 =++ nn ee αα , entraîne (image par u ) : 0.....0....0. 111 =+++++ + pnpp ee αααα ,  

    donc les p  derniers coefficients sont nuls, puis en revenant à l’égalité de départ, on en déduit la nullité  
    des autres coefficients. 

    Dans cette base B de E, on a : ,(umat B 







=

00

0
) pI

, qui correspond bien à ce que l’on voulait.  

 

77. Pour : P  ∈ En, alors : ( ) )('.)(...2)(. ²²² xPexPexxPe
dx

d xxx −−− +−= , et : )(')(..2)( xPxPxxQ +−= . 

On constate alors que si P  est de degré k , alors 'P  est de degré au plus 1−k  et PX ..2  de degré 1+k . 
Donc )(Pun  est de degré 1+k . 

On en déduit que : 
  • nu  est une application de En dans En+1 et sa linéarité est immédiate, 

  • si P  est non nul, )(Pun  est non nul puisque de degré supérieur à celui de P . 

On en déduit que : { }0)ker( =nu . 

Puis : nEu nn == )dim())dim(Im( , avec le théorème du rang. 

Le plus simple alors est de déterminer ensuite la matrice de nu  dans les bases Bn et Bn+1, et pour cela : 

  • Xun .2)1( −= , 

  • ∀ 11 −≤≤ nk , 11 ..2)( −+ +−= kkk
n XkXXu .  

D’où : ,( numat B ,n B



























−

−

−

=+

200

0

1

00

2

0010

)1

LL

OOM

OOOM

OOO

MOOO

L

nn , matrice de taille nn ×+ )1( .  

L’image est le sous-espace vectoriel de �n[X] engendré par les polynômes )..2( 11 −+ − kXkX , pour :  

  11 −≤≤ nk , et et le polynôme X.2− . 
 

78. Pour cela, on note u  l’application de �n[X] dans lui-même qui à un polynôme P  associe le polynôme Q  

défini par : ∑
=








=
n

i
i

i X
PQ

0

)(

2
. 

u  est alors linéaire et c’est donc un endomorphisme de E. 
De plus, si : 0)deg( ≥= kP , alors :  

  ∀ ki ≤≤0 , ik
X

P
i

i −=
















2
deg )( , et : ∀ k < i ≤ n, 0

2
)( =








i

i X
P . 

Donc l’image de P  est une somme de polynômes de degrés distincts (et du polynôme nul) : c’est donc un 
polynôme non nul et u  est donc injectif. 

u  est donc un automorphisme de �n[X], et : ∀ Q  ∈ �n[X], ∃ ! P  ∈ �n[X], ∑
=








=
n

i
i

i X
PQ

0

)(

2
.  

Pour : 3=n , et : 3XQ = , on pose : dXcXbXaP +++= ... 23 , et : 
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  






+






+






+=







∑

= 8
'''

4
''

2
')(

20

)( X
P

X
P

X
PXP

X
P

n

i
i

i , 

soit : ).6.2(..
2

3
..

4

3
.

2
23

0

)( abcdXabcXabXa
X

P
n

i
i

i ++++






 +++






 ++=







∑

=

. 

En résolvant le système, on obtient : 
4

15
,

4

3
,

3

4
,1 −=−=−== dcba , soit : 

4

15
.

4

3
.

4

3 23 −−−= XXXP . 

 
79. Pour : 1=n , la matrice A est nulle et donc n’est pas inversible. 

Pour : 2≥n , nIUA −= , où U  est la matrice ne comportant que des 1. 

Alors : nIUUA +−= .222 , puisque les matrices commutent, et : nIUUnA +−= .2.2 , soit : 

  nnnn InAnIIAnIUnA ).1().2()).(2().2(2 −+−=++−=+−= . 

Donc : nInAnA ).1().2(2 −=−− , et : nn InInAA ).1()).2(.( −=−− . 

A est donc inversible et : 



















−

−

−
=−

−
=−−

−
=−

n

n

n
IU

n
InA

n
A nn

211

1

1

112

.
1

1
.

1

1
)).2(.(

1

11

L

OOM

MOO

L

. 

 
80. a. En notant u  l’endomorphisme canoniquement associé à A , et ( nee ...,1 ) la base canonique de �n,  

    alors : 21)( eeu = , …, nn eeu =− )( 1 , et : 1)( eeu n = . 

    Par récurrence, on en déduit que :  
      ∀ 11 −≤≤ nk , ∀ kni −≤≤1 , kii

k eeu +=)( , et : ∀ nikn ≤≤+− 1 , nkii
k eeu −+=)( . 

    En particulier : nR

n idu = . 

    Ensuite : ∀ k  ∈ �, avec : kr =  (mod n ), où : 11 −≤≤ nr , rk AA = . 
b. On obtient alors :  
      ∀ k  ∈ �*, k

n
k IAM )( += , et comme les deux matrices commutent, la formule du binôme s’applique. 

    Soit : ∑
=









=+=

k

i

ik
n

k A
i

k
IAM

0

.)( , que l’on peut réduire, si : nk > . 

    En particulier : 
























































−










−



























−








=







=∑

=

0
.2

11

1

1

110
.2

.
0

nn

n

n
n

n

n

n

n

nn

A
i

n
M

n

i

in

L

OOM

MOO

L

. 

 
Calcul de déterminants.  
81. Sur chaque ligne de )'det(A , on peut factoriser par i)1(−  et sur chaque colonne par j)1(− . 

Donc : )det()det(.)1.()1()'det( 11 AAA

n

j

n

i

ji

=
∑

−
∑

−= == . 
 

82. Dans )det(A , on remplace chaque ligne iL  par : nii LLL +=' , pour : 11 −≤≤ ni . 

Chaque terme de la nouvelle ligne iL'  est alors égal à 0, 2 ou 2− , pour : 11 −≤≤ ni , et dans chacune 

de ces lignes, on peut factoriser par 2, les termes restants étant des entiers. 
Autrement dit : )'det(.2)det( 1 AA n−= , où 'A  est une matrice constituée d’entiers égaux à 0, 1 ou 1− . 
Or il est immédiat par récurrence sur n que le déterminant d’une matrice de taille n uniquement constituée 
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de 0, 1 ou 1−  est un entier relatif. 
Donc on conclut alors que )det(A  est bien un élément de �, divisible par 12 −n .   
 

83. Raisonnons comme proposé par récurrence. 

Si A  est une matrice 1×1 vérifiant les hypothèses de l’énoncé, alors : 1)det( 1,11,1 ≤== aaA . 

Supposons maintenant le résultat vrai pour toute matrice de taille )1()1( −×− nn , et vérifiant les 
hypothèses proposées, et soit A une matrice de taille nn × , telle que : 

  ∀ nji ≤≤ ,1 , jia ,0 ≤ , et : ∀ ni ≤≤1 , 1
1

, ≤∑
=

n

j
jia . 

Développons alors )det(A  suivant par exemple sa dernière ligne. 

On obtient : ∑
=

∆=
n

j
jnjnaA

1
,, .)det( , puis : ∑∑

==

=∆≤
n

j
jnjn

n

j
jnjn DaaA

1
,,

1
,, ..)det( ,  

où jnD ,  est le déterminant d’une matrice jnA ,  extraite de A, de taille )1()1( −×− nn , dont les coefficients 

sont positifs et tels que : 

  ∀ 11 −≤≤ ni , 1
1

,
1

, ≤≤∑∑
=

≠
=

n

k
ki

n

jk
k

ki aa . 

Autrement dit, toutes les matrices jnA ,  précédentes vérifient la même propriété que A , et : 

  ∀ nj ≤≤1 , 1)det( ,, ≤= jnjn AD , puis : 

  1.)det(
1

,
1

,, ≤≤≤ ∑∑
==

n

j
jn

n

j
jnjn aDaA , soit le résultat voulu, ce qui termine la récurrence. 

 
84. a. Ce premier résultat s’obtient bien sûr par récurrence sur k . 

    Il est immédiat pour : 0=k , et si on le suppose vrai pour une valeur k  entière donnée, alors : 

      
,).1(.

.)..(...))...(()..(.
11

111

++

+++

++=

++=+=+==
kk

k
n

kkk
n

kkk

BkAB

BkIABBBkBABBIkABBBABA
 

    c'est-à-dire ce que l’on voulait obtenir, ce qui termine la récurrence.  
b. On en déduit que :  
      ∀ k ∈ �*, ).det().det()..det().det( n

kkkk IkABBkABBA +=+= , soit :  

        0)).det()).(det(det( =+− n
k IkAAB .  

    Supposons maintenant que : 0)det( ≠B . 

    Alors : ∀ k  ∈ �*, )det().det( AIkA n =+ . 

    Or l’application f  : ).det( nIxAx +a , est polynomiale en x  de degré n , ce qui peut se montrer par  

    récurrence, en utilisant deux étapes : 
      • toute matrice de taille nn ×  dont les coefficients sont des fonctions affines de x  a un déterminant  
    qui est un polynôme en x  de degré au plus n , à l’aide d’un développement par rapport à une ligne, 
      • c’est un polynôme de degré effectivement n  et de coefficient dominant égal à 1 en développant par  
    rapport à la dernière colonne par exemple. 
    En effet, cela conduit à une somme de n  produits : 
      - ceux formés d’un terme constant et d’un déterminant qui est un polynôme de degré au plus n   
    d’après la première étape, 
      - celui correspondant au produit de )( , xa nn +  et du déterminant extrait de taille )1()1( −×− nn  qui est  

    par hypothèse de récurrence un polynôme de degré )1( −n  et de coefficient dominant égal à 1. 

    Donc : )det().det( AIxAx n −+a , est également un polynôme de degré n  et ne peut s’annuler en  

    une infinité de valeurs (ici les valeurs entières : k  ∈ �*). 
    Conclusion : on a bien : 0)det( =B . 

c. Enfin, on a évidemment : 0).().()..()( =−=−= ABtrBAtrABBAtrBtr . 
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85. a. Ecrivons la matrice proposée : 



















−−−
−

−−
−−−

=−

xcxaxa

xb

xcxa

xbxbxc

JxbaM

L

OOM

MO

L

.),( . 

    Pour son déterminant, on peut remplacer chaque colonne kC  par 1CCk − , et ceci, pour : 2 ≤ k ≤ n.  

    Le déterminant obtenu a tous ses termes constants sauf ceux de la première colonne qui sont des  
    fonctions affines de x . 
    Si maintenant on le développe suivant cette première colonne, on obtient une somme de n  termes,  
    chacun étant un produit d’un terme constant (un cofacteur formé à partir des colonnes nCC ,...,2 ) et  

    d’une fonction affine de x . 
    Donc )(xϕ  se présent bien comme une fonction affine de x , soit un polynôme en x  de degré au plus  

    1, ce qui peut s’écrire : ∃ ( βα , ) ∈ K2, ∀ x  ∈ K, βαϕ += xx .)( . 

    Or : naca )()( −=ϕ , et : nbcb )()( −=ϕ , car dans les deux cas, les déterminants sont triangulaires. 

    Dans le cas où : ba ≠ , on peut alors résoudre le système :  

      naca )(. −=+ βα , 

      nbcb )(. −=+ βα , 

    qui a pour solution : 
ba

bcac nn

−
−−−= )()(α , et : 

ab

bcaacb nn

−
−−−= ).().(β . 

    Enfin : 
ab

bcaacb
baM

nn

−
−−−=== ).().(

)0()),(det( βϕ . 

b. Pour cette question, on peut procéder par récurrence ou utiliser la formule théorique du déterminant. 
    Par exemple, on peut montrer que si A  est une matrice nn ×  dont les coefficients sont des fonctions  
    affines de x , alors )det(A  est un polynôme de degré au plus n  en x , ce qui s’obtient sans problème  
    avec une récurrence et un développement suivant une ligne ou une colonne. 
    La matrice ),( xaM  étant alors une matrice du type décrit juste au-dessus, )(xψ  apparaît bien comme  
    un polynôme en x , donc une fonction continue en x . 

    Donc : 
ax

xcaacx
xaaaM

nn

axax −
−−−===

≠
→

≠
→

).().(
lim)(lim)()),(det( ψψ . 

    Distinguons alors deux cas : 
      • si : )( bca == , alors : 0)),(det( =aaM , si : 2≥n , et : aaaM =)),(det( , si : 1=n . 

      • si : ca ≠ , on utilise alors par exemple un développement limité à l’ordre 1, en posant : hax += . 

    On peut alors écrire : 
n

nnnnn

ac

h
acaachacaxcaacx 









−
−−−−+−=−−− 1.).().().().().( ,  

    soit : )(.).(.).().().( 1 hohacanachxcaacx nnnn +−+−=−−− − ,  

    et finalement : )).1(.()().(.)()),(det( 11 ancacacanacaaM nnn −+−=−+−= −− .  

c. On peut aussi écrire : 

caaanc

a

a

c

aaanc

caa

a

ca

aac

aaM

L

OOMM

MOOM

MOM

LL

L

OOM

MO

L

).1(

).1(

)),(det(

−+

−+

== , en additionnant  

    toutes les colonnes à la première. 
    Puis on factorise la première colonne et on remplace chaque ligne iL  par 1LLi −  , pour : ni ≤≤2 .  
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    Cela donne : 1)).().1((

001

0

0

00

1

).).1(()),(det( −−−+=

−

−
−+= nacanc

ac

ac

aa

ancaaM

L

OOMM

MOOM

LM

LL

.  

 
86. a. Comme suggéré, la n -linéarité du déterminant, appliquée à la dernière colonne, permet d’écrire :  

      ∀ 2≥n , 11 .)!1(.

100

11

0

0

1001

11

0

1

1

0112

111

1

1

1

1112

−− +−=+
−

=+= nnn DnnDn

n

n

nn

D

LL

OM

MOOM

MMOO

L

LL

OM

MOOM

MMOO

L

LL

OM

MOOM

MMOO

L

. 

b. On en déduit que : ∀ 2≥n , 
)!1(

1

!
1

−
+= −

n

D

nn

D nn , d’où immédiatement par récurrence : 

      ∀ 2≥n , n

n

k

n

k

n H
k

D

kn

D
+=+=+= ∑∑

==

12
1

!1

1

! 2

1

2

, et finalement : !).1( nHD nn += .  

 
Déterminants tridiagonaux. 
87. En effectuant le développement habituel d’un tel déterminant, on constate que ( )(xAn ) vérifie la relation 

de récurrence : ∀ 3≥n , ))(det(.))(det().1())(det( 2
2

1
2 xAxxAxxA nnn −− −+= . 

En notant : ))(det( xAD nn = , on étudie alors l’équation caractéristique associée à la suite ( nD ) qui est : 

  0).1( 222 =++− xrxr , et dont les racines sont 1 et 2x . 

• Si x  est distinct de 1± , alors : ∃ ( βα , ) ∈ �2, ∀ 1≥n , n
n xD .2.βα += . 

Or : 22
1 .1 xxD βα +=+= , et : 442

2 .1 xxxD βα +=++= , d’où :  

  
21

1

x−
=α , 

12

2

−
=

x

xβ , et : ∀ 1≥n , 
2

)1.(2

1

1

x

x
D

n

n −
−=

+

. 

• Si x  vaut 1± , alors : ∃ ( βα , ) ∈ �2, ∀ 1≥n , nDn .βα += ,  

et on détermine à nouveau α  et β  avec 1D  et 2D . 

Pour cela : βα +== 21D , βα .232 +==D , d’où : 1== βα , et : ∀ 1≥n , 1+= nDn .  

 
Déterminant de Vandermonde. 
88. a. On raisonne sur chaque colonne, en allant de la 2ème à la dernière. 

    1f  se présente sous la forme : ∀ x ∈ �, 11 )( axxf += , et si on remplace 2C  par 112 .CaC − , la  

    colonne 2C devient la deuxième colonne du Vandermonde. 

    Puis 2f  est de la forme : ∀ x  ∈ �, 22
2

2 .)( bxaxxf ++= , et on peut remplacer la colonne 3C  par  

    12223 .. CbCaC −− , cette colonne 3C  devenant la colonne numéro 3 du Vandermonde. 

    En répétant cette opération sur toutes les colonnes, on aboutit à l’égalité voulue (une démonstration  
    propre passerait par une récurrence).  
b. Pour cela, on commence par écrire : 

      ∀ k  ∈ �*, 

















== ∑

=

−
k

j

jjjkxki xix
j

k
exk

0

.. )(sin.).(cos.Re)Re().cos( , 

    et dans cette somme on ne retient que les j pairs (pour garder la partie réelle), soit : 

      ∑∑









=

−









=

− −−







=−








=

2

0

2.2
2

0

.2.2 ))(cos1.()1).((cos.
.2

)(sin.)1).((cos.
.2

).cos(

k

p

pppk

k

p

pppk xx
p

k
xx

p

k
xk , 

    ce qui montre bien que ).cos( xk  est un polynôme en )cos(x , de degré au plus k . 
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    Cherchons maintenant le coefficient de )(cos xk  dans cette somme. 

    Il vaut : 1
2

0

2

0

2
.2

)1.()1.(
.2

−









=










=

=







=−−








∑∑ k

k

p

k

p

pp

p

k

p

k
, qu’on peut retrouver en calculant n)11( +  et n)11( − . 

    Donc ).cos( xk  est bien un polynôme en )cos(x  de degré k  et de coefficient dominant égal à 12 −k . 

    Le déterminant ∆n est donc du type précédent, si on commence par factoriser 12 −k  dans chaque  
    colonne kC , et on fait apparaître ainsi des polynômes normalisés en )cos(x  de degré 1−k   pour  

    chaque colonne.  

    Donc : 

)(cos)cos(1

)(cos)cos(1

.2...2.2

).cos()cos(1

).cos()cos(1

11

11

110

11

11

1

++

−

++

+ ==∆

n
n

n

n

n

nn

n

aa

aa

ana

ana

L

MMM

MMM

L

L

MMM

MMM

L

, et  

    finalement : ∏
≤≠≤

−

+ −=∆
nji

ij

nn

n aa
1

2

)1.(

1 ))cos()(cos(.2 .  

 
Déterminants, applications linéaires et matrices.  
89. a. Pour calculer )det(f , il suffit de trouver la matrice de f  dans une base de Mn(�). 

    On peut choisir la base canonique, mais aussi une base plus adaptée, par exemple obtenue comme  
    réunion d’une base de Sn(�) (matrices symétriques) et de Ån(�) (matrices antisymétriques) qui sont  
    deux sous-espaces supplémentaires dans Mn(�). 

    Chaque vecteur de la première base (qui compte : dim(Sn(�
2

)1.(
))

+= nn
, éléments) est invariant par  

    f  et chaque vecteur de la deuxième (qui en compte : dim(Ån(�
2

)1.(
))

−= nn
) est changé en son  

    opposé. 

    La matrice de f  dans cette base est donc diagonale, elle compte 
2

)1.( +nn
 éléments diagonaux égaux  

    à 1, et 
2

)1.( −nn
 égaux à 1− . 

    Donc le déterminant de f  vaut : 2

)1.(

)1()det(
−

−=
nn

f . 

b. Puisque f  vérifie : idf =2
M(�), on a donc : 22 ))(det(1)det( ff == , donc on pouvait prévoir qu’on  

    aurait : 1)det( ±=f . 

    Plus simplement, puisque l’application transposée est bijective, on savait que )det(f  serait non nul.  
 

90. a. On peut montrer par récurrence que f  est un polynôme en x  de degré au plus n , avec la  
    proposition :  
    toute matrice de taille nn ×  dont les coefficients sont des fonctions affines de x  a un déterminant qui  
    est un polynôme en x  de degré au plus n . 
    Pour montrer que c’est un polynôme de degré effectivement n  et de coefficient dominant égal à 1, on  
    peut le faire là encore par récurrence, en développant par rapport à la dernière colonne par exemple. 
    En effet, cela conduit à une somme de n  produits : 
      • ceux formés d’un terme constant et d’un déterminant qui est un polynôme de degré au plus n ,  
      • celui correspondant au produit de )( , xa nn +  et du déterminant extrait de taille )1()1( −×− nn  qui est  

    par hypothèse de récurrence un polynôme de degré )1( −n  et de coefficient dominant égal à 1. 

b. Examinons les sommes par ligne de la matrice ).( nIxA + , et pour cela, on rappelle que le coefficient  

    générique de cette matrice est ).( ,, iiii xa δ+  : 
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      ∀ ni ≤≤1 , iiiiiiiiii

n

ij
j

ji

n

ij
j

jiji xaxaaaaxa ,,,,,
1

,
1

,, .. δδ +=+≤=<=+ ∑∑
≠
=

≠
=

, car : 0≥x .  

c. f  a une limite égale à +∞ en +∞, comme polynôme. 

    Puis si )0(f  était négatif, alors par continuité, f  s’annulerait entre 0 et +∞. 

    Or comme matrice à diagonale strictement dominante, ).( nIxA +  est toujours inversible et son  

    déterminant ne s’annule donc pas. 
    Conclusion : 0)0()det( >= fA . 
 

91. a. On transforme l’égalité de départ en : PABP .. = , puis : )...(.. 2211 BPPAiPABP −=− . 
    Quitte à travailler coefficients par coefficients, on en déduit que les deux membres de l’égalité sont  
    nuls et donc : 11 .. PABP = , et : BPPA .. 22 = .   

b. Les coefficients de la matrice ).( 21 PxP +  sont affines en x . 
    On peut alors montrer par récurrence que l’application proposée est polynomiale en x .  
c. La fonction polynomiale précédente n’est pas la fonction nulle puisqu’elle est non nulle pour : iv =  (la  
    matrice ).( 21 PiP +  est inversible) donc elle admet un nombre fini de racines, et :  

       ∃ a  ∈ �, 0).det( 21 ≠+ PaP  . 

d. Notons alors : 21 .PaPQ += . 
    Cette matrice Q est réelle et inversible d’après la question c. 
    De plus : 11 .. PABP = , et : BPPA .. 22 = ., donc : )..()..( 2121 PaPABPaP +=+ , soit : QABQ .. = , et  

    finalement : QAQB ..1−= . 
e. On vient de montrer que si deux matrices réelles sont semblables par l’intermédiaire d’une matrice  
    complexe, alors elles le sont aussi par l’intermédiaire d’une matrice réelle. 

 


