
Corrigé informatique commune

Transformations du photomaton et
du boulanger

Question 1. symétrie d’axe vertical

On utilise les relations x′ = x et y′ = q − 1− x pour définir la fonction :

def symétrie(img):
p, q = img.shape[0], img.shape[1]
img2 = np.empty_like(img)
for x in range(p):

for y in range(q):
img2[x, q−1−y] = img[x, y]

return img2

Question 2. rotation d’un quart de tour

On utilise les relations x′ = y et y′ = p − 1− x pour définir la fonction :

def rotation(img):
p, q = img.shape[0], img.shape[1]
img2 = np.empty_like(img)
for x in range(p):

for y in range(q):
img2[y, p−1−x] = img[x, y]

return img2

1. Transformation du photomaton

Question 3. La transformation du photomaton utilise les formules :

(x′ , y′) =


(x/2, y/2) si x et y sont pairs
(x/2,by/2c+ q/2) si x est pair et y impair
(bx/2c+ p/2, y/2) si x est impair et y pair
(bx/2c+ p/2,by/2c+ q/2) si x et y sont impairs

Pour simplifier la fonction principale on commence par définir la fonction :

def photomat(k, d):
if k % 2 == 0:

return k // 2
else:

return k // 2 + d // 2

ce qui conduit à la définition suivante :

def photomaton(img):
p, q = img.shape[0], img.shape[1]
img2 = np.empty_like(img)
for x in range(p):

for y in range(q):
img2[photomat(x, p), photomat(y, q)] = img[x, y]

return img2

page 1

Question 4. Le script suivant permet de visualiser l’ensemble des transformations avant retour à l’image initiale :

img = picasso
while True:

img = photomaton(img)
plt.imshow(img)
plt.show()
if (img == picasso).all():

break

Cette image, de taille 256× 256, a une période égale à 8.

Question 5. Pour calculer la période d’une image quelconque on utilise la fonction :

def periode_photomaton(img):
p, q = img.shape[0], img.shape[1]
n, t = 1, 2
while (t−1) % (p−1) != 0 or (t−1) % (q−1) != 0:

n += 1
t *= 2

return n

Ainsi, la période d’une image de taille 400× 360 (la taille de l’image matisse.png) est égale à 3 222.

Question 6. Pour chaque pixel on doit appliquer n fois la fonction photomat sur chacune de ses coordonnées. Or il se
trouve que l’abscisse d’un pixel a une période qui ne dépend que de sa valeur, et il en est de même pour son ordonnée.
En d’autres termes, tous les points situés sur une ligne verticale reviennent sur cette ligne au bout du même nombre
d’itérations, et il en est de même pour les lignes horizontales. Il suffit donc de faire le calcul une bonne fois pour toute
pour chacun des indices de ligne et pour chacun des indices de colonne pour pouvoir ensuite déterminer rapidement où
situer un pixel après n itérations.

def photomaton2(img, n):
p, q = img.shape[0], img.shape[1]
img2 = np.empty_like(img)
ligne = []
for x in range(p):

u = x
for _ in range(n):

u = photomat(u, p)
ligne.append(u)

colonne = []
for y in range(q):

v = y
for _ in range(n):

v = photomat(v, q)
colonne.append(v)

for x in range(p):
for y in range(q):

img2[ligne[x], colonne[y]] = img[x, y]
return img2

Ceci permet d’obtenir instantanément la 180e itération de l’image matisse.png (voir figure 1).
Cette image est de taille 400× 360. Le plus petit entier n pour lequel 399 divise 2n − 1 est n = 18, tandis que le plus petit
entier n pour lequel 359 divise 2n − 1 est n = 179.
Puisque 180 ≡ 0 mod (18), tous les pixels ont retrouvé leurs lignes de départ initiales ; puisque 180 ≡ 1 mod (179), les
colonnes n’ont subies qu’une transformation par rapport à leurs positions initiales.

2. Transformation du boulanger

Question 7. Lors de l’« aplatissement » de l’image, le pixel de coordonnées (x,y) se retrouve au point de coordonnées :

(x1, y1) =

(x/2,2y) si x est pair
(bx/2c,2y + 1) si x est impair

dans l’image intermédiaire de dimensions p/2× 2q.

page 2

Figure 1 – La 180e itération de l’image matisse.png.

Il faut ensuite « replier » l’image, ce qui conduit aux formules :

(x′ , y′) =

(x1, y1) si y1 < q

(p − 1− x1,2q − 1− y1) si y1 > q

La fonction qui calcule les nouvelles coordonnées d’un pixel après transformation se définit donc par :

def boulange(x, y, p, q):
x1, y1 = x // 2, 2 * y + x % 2
if y1 < q:

return x1, y1
else:

return p − 1 − x1, 2 * q − 1 − y1

On en déduit la fonction :

def boulanger(img):
p, q = img.shape[0], img.shape[1]
img2 = np.empty_like(img)
for x in range(p):

for y in range(q):
img2[boulange(x, y, p, q)] = img[x, y]

return img2

Question 8. On visualise l’ensemble des transformations de l’image picasso.png à l’aide du script :

img = picasso
while True:

img = boulanger(img)
plt.imshow(img)
plt.show()
if (img == picasso).all():

break

Il faut maintenant 17 itérations avant de retrouver l’image initiale.

Et pour les plus rapides

Question 9. On obtient la période d’un pixel en utilisant la fonction :

page 3

def periode_pixel(x, y, p, q):
n = 1
x1, y1 = boulange(x, y, p, q)
while (x1, y1) != (x, y):

n += 1
x1, y1 = boulange(x1, y1, p, q)

return n

Question 10. Une fois la période calculée pour un pixel, on reporte sa valeur à tous les pixels de son orbite, et on ne fait
le calcul que pour les pixels dont on ne connait pas encore la période :

def tableau_des_periodes(img):
p, q = img.shape[0], img.shape[1]
r = np.zeros((p, q), dtype=int)
for x in range(p):

for y in range(q):
if r[x, y] == 0:

s = periode_pixel(x, y, p, q)
x1, y1 = x, y
for _ in range(s):

r[x1, y1] = s
x1, y1 = boulange(x1, y1, p, q)

return r

Question 11. Pour obtenir la période d’une image on commence par extraire toutes les valeurs distinctes du tableau des
périodes puis on calcule le ppcm de ces valeurs.

def ppcm(a, b):
return a * (b // gcd(a, b))

def periode_boulanger(img):
p, q = img.shape[0], img.shape[1]
r = tableau_des_periodes(img)
lst = []
for x in range(p):

for y in range(q):
if r[x, y] not in lst:

lst.append(int(r[x, y]))
m = 1
for n in lst:

m = ppcm(m, n)
return m

On observera une petite subtilité dans le code ci-dessus : lorsqu’on crée un tableau numpy contenant des entiers, ces
derniers sont codés sur 64 bits (ils appartiennent au type int64) et ne peuvent donc dépasser 263 −1 ; c’est le cas du tableau
des périodes. Or pour de nombreuses images le ppcm des valeurs contenues dans le tableau des périodes dépasse cette
borne. Je profite donc de leur recopie dans la liste lst pour les convertir au format int (qui lui n’est pas borné) de manière
à ce que le calcul de ppcm soit correct.
Avec cette fonction on obtient la période de l’image matisse.png :

>>> periode_boulanger(matisse)
896568225229163143800

À raison de 10 images par seconde il faudrait plus de 28 milliards de siècles pour afficher toutes ses transformations avant
de retrouver l’image initiale.

Question 12. Pour chaque pixel (x,y) non encore traité on calcule sa position finale en itérant la fonction boulange
un nombre de fois égal à n mod r(x,y). On traite ensuite les pixels (x1, y1) de son orbite en poursuivant l’itération de la
fonction boulange et en remplaçant r[x1, y1] par zéro de manière à détecter les pixels qui ont été traités.

page 4

def boulanger2(img, n):
p, q = img.shape[0], img.shape[1]
r = tableau_des_periodes(img)
img2 = np.empty_like(img)
for x in range(p):

for y in range(q):
if r[x, y] != 0:

u, v = x, y
for _ in range(n % r[x, y]):

u, v = boulange(u, v, p, q)
x1, y1 = x, y
for _ in range(r[x, y]):

img2[u, v] = img[x1, y1]
x1, y1 = boulange(x1, y1, p, q)
u, v = boulange(u, v, p, q)
r[x1, y1] = 0

return img2

Pour répondre à la dernière question nous avons besoin d’une fonction qui calcule le pourcentage de pixels identiques
que partagent deux images :

def pixels_communs(img1, img2):
p, q = img1.shape[0], img1.shape[1]
s = 0
for x in range(p):

for y in range(q):
if (img1[x, y] == img2[x, y]).all():

s += 1
print('pourcentage de pixels communs : {} %'.format(np.floor(s / p / q * 100)))

Figure 2 – Les itérations de l’image matisse.png pour n = 67911 et n = 1496775000382576200.

On obtient :

>>> pixels_communs(matisse, boulanger2(matisse, 67911))
pourcentage de pixels communs : 47.0 %

>>> pixels_communs(matisse, boulanger2(matisse, 1496775000382576200))
pourcentage de pixels communs : 89.0 %

page 5

