Corrigé

informatique commune

Transformations du photomaton et

Question 1. symétrie d’axe vertical
On utilise les relations x" = x et y" = g — 1 — x pour définir la fonction :

def symétrie(img):
p, q = img.shape[0], img.shape[1l]
img2 = np.empty_like(img)
for x 1in range(p):
for y 1in range(q):
img2[x, g-1-y] = img[x, y]
return img2

Question 2. rotation d’'un quart de tour
On utilise les relations x" =y et " = p— 1 — x pour définir la fonction :

def rotation(img):
p, q = img.shape[0], img.shape[1]
img2 = np.empty_Llike(img)
for x 1in range(p):
for y 1in range(q):
img2ly, p-1-x] = img[x, y]
return img2

1. Transformation du photomaton

Question 3. La transformation du photomaton utilise les formules :

du boulanger

(x/2,9/2) si x et y sont pairs
) = (x/2,1y/2]+q/2) si x est pair et y impair
V= (Lx/2]+p/2,v/2) si x est impair et y pair
(

Pour simplifier la fonction principale on commence par définir la fonction :

def photomat(k, d):
if k % 2 == 0:
return k // 2
else:
return k // 2 +d // 2

ce qui conduit a la définition suivante :

def photomaton(img):
p, q = img.shape[0], img.shape[1l]
img2 = np.empty_like(img)
for x 1in range(p):
for y 1in range(q):
img2[photomat(x, p), photomat(y, q)] = img[x, y]
return img2

[x/2]+p/2,|v/2]+q/2) six ety sontimpairs

pagel

Question 4. Le script suivant permet de visualiser I’ensemble des transformations avant retour a I'image initiale :

img = picasso

while True:
img = photomaton(img)
plt.imshow(img)

plt.show()
if (img == picasso).all():
break

Cette image, de taille 256 x 256, a une période égale a 8.
Question 5. Pour calculer la période d’une image quelconque on utilise la fonction :

def periode_photomaton(img):
p, q = img.shape[0], img.shape[1l]
n, t =1, 2
while (t-1) % (p-1) != 0 or (t-1) % (g-1) != 0O:

n += 1
t %= 2
return n

Ainsi, la période d’une image de taille 400 x 360 (la taille de 'image matisse.png) est égale a 3 222.

Question 6. Pour chaque pixel on doit appliquer # fois la fonction photomat sur chacune de ses coordonnées. Or il se
trouve que l’abscisse d’un pixel a une période qui ne dépend que de sa valeur, et il en est de méme pour son ordonnée.
En d’autres termes, tous les points situés sur une ligne verticale reviennent sur cette ligne au bout du méme nombre
d’itérations, et il en est de méme pour les lignes horizontales. Il suffit donc de faire le calcul une bonne fois pour toute
pour chacun des indices de ligne et pour chacun des indices de colonne pour pouvoir ensuite déterminer rapidement ou
situer un pixel aprés n itérations.

def photomaton2(img, n):

p, q = img.shape[0], img.shape[1l]
img2 = np.empty_like(img)
ligne = []
for x 1in range(p):
u = x

for _ 1in range(n):
u = photomat(u, p)
ligne.append(u)
colonne = []
for y 1in range(q):
vV =y
for _ 1in range(n):
v = photomat(v, q)
colonne.append(v)
for x 1in range(p):
for y in range(q):
img2[ligne[x], colonnel[y]] = img[x, y]
return img2

Ceci permet d’obtenir instantanément la 180¢ itération de 'image matisse.png (voir figure 1).

Cette image est de taille 400 x 360. Le plus petit entier n pour lequel 399 divise 2" — 1 est n = 18, tandis que le plus petit
entier n pour lequel 359 divise 2" — 1 est n =179.

Puisque 180 = 0 mod (18), tous les pixels ont retrouvé leurs lignes de départ initiales; puisque 180 = 1 mod (179), les
colonnes n'ont subies qu'une transformation par rapport a leurs positions initiales.

2. Transformation du boulanger

Question 7. Lors de '« aplatissement » de I'image, le pixel de coordonnées (x,y) se retrouve au point de coordonnées :

2,2 i t pai . . P . .
(x1,v1) = {(x/ y) St xest patr dans I'image intermédiaire de dimensions p/2 x 24.

(lx/2],2y+1) six est impair

page 2

Ficure 1 — La 180¢ itération de I'image matisse.png.

I1 faut ensuite « replier » I'image, ce qui conduit aux formules :

, X1, siy <
() = (x1,91) '3’1 q
(p-1-x1,29-1-791) siy;>qg

La fonction qui calcule les nouvelles coordonnées d’un pixel aprés transformation se définit donc par :

def boulange(x, y, p, q):
xl, yl = x // 2, 2 *y + X % 2
if yl < q:
return x1, yl
else:
return p - 1 - x1, 2 xq -1 -yl

On en déduit la fonction :

def boulanger(img):
p, q = img.shape[0], img.shape[1l]
img2 = np.empty_like(img)
for x 1in range(p):
for y in range(q):
img2[boulange(x, y, p, q)] = img[x, y]
return img2

Question 8. On visualise I'ensemble des transformations de I'image picasso.png a l’aide du script :

img = picasso

while True:
img = boulanger (img)
plt.imshow(img)

plt.show()
if (img == picasso).all():
break

Il faut maintenant 17 itérations avant de retrouver I'image initiale.

Et pour les plus rapides

Question 9. On obtient la période d’un pixel en utilisant la fonction :

page 3

def periode_pixel(x, y, p, q):

n=1
x1l, yl = boulange(x, y, p, q)
while (x1, yl) != (x, y):
n +=1
x1, yl = boulange(x1l, yl, p, q)
return n

Question 10. Une fois la période calculée pour un pixel, on reporte sa valeur a tous les pixels de son orbite, et on ne fait
le calcul que pour les pixels dont on ne connait pas encore la période :

def tableau_des_periodes(img):
p, q = img.shape[0], img.shape[1l]
r = np.zeros((p, q), dtype=int)
for x 1in range(p):
for y 1in range(q):
if rix, y] ==
s = periode_pixel(x, y, p, Q)
x1, yl = x, y
for _ 1in range(s):
rixl, yl] = s
x1l, yl = boulange(xl, yl, p, q)
return r

Question 11. Pour obtenir la période d’une image on commence par extraire toutes les valeurs distinctes du tableau des
périodes puis on calcule le ppcm de ces valeurs.

def ppcm(a, b):
return a * (b // gcd(a, b))

def periode_boulanger(img):
p, q = img.shape[0], img.shape[1l]
r = tableau_des_periodes(img)
st = []
for x 1in range(p):
for y 1in range(q):
if r[x, y] not in lst:
lst.append(int(r[x, yl))
m=1
for n in 1st:
m = ppcm(m, n)
return m

On observera une petite subtilité dans le code ci-dessus : lorsqu’on crée un tableau NUMPY contenant des entiers, ces
derniers sont codés sur 64 bits (ils appartiennent au type int64) et ne peuvent donc dépasser 2°° —1; cest le cas du tableau
des périodes. Or pour de nombreuses images le ppcm des valeurs contenues dans le tableau des périodes dépasse cette
borne. Je profite donc de leur recopie dans la liste 1st pour les convertir au format int (qui lui n’est pas borné) de maniere
a ce que le calcul de ppcm soit correct.

Avec cette fonction on obtient la période de I'image matisse.png:

>>> periode_boulanger (matisse)
896568225229163143800

A raison de 10 images par seconde il faudrait plus de 28 milliards de siécles pour afficher toutes ses transformations avant
de retrouver I'image initiale.

Question 12. Pour chaque pixel (x,y) non encore traité on calcule sa position finale en itérant la fonction boulange
un nombre de fois égal a n mod r(x,y). On traite ensuite les pixels (x;,y;) de son orbite en poursuivant I'itération de la
fonction boulange et en remplagant r[x1,y;] par zéro de maniére a détecter les pixels qui ont été traités.

page 4

def boulanger2(img, n):
p, q = img.shape[0], img.shape[1l]
r = tableau_des_periodes(img)
img2 = np.empty_like(img)
for x 1in range(p):
for y in range(q):
if rix, y] != 0:
u, v.= X, Yy
for _ 1in range(n % r[x, y]):
u, v = boulange(u, v, p, q)
x1, yl = x, y
for _ 1in range(r[x, y]):
img2[u, v] = img[x1l, yl]
x1l, yl = boulange(x1l, yl, p, q)
u, v = boulange(u, v, p, Q)
rixl, yl] = 0
return img2

Pour répondre a la derniere question nous avons besoin d’une fonction qui calcule le pourcentage de pixels identiques

que partagent deux images :

def pixels_communs(imgl, img2):
p, g = imgl.shape[0], imgl.shape[1l]
s =0
for x in range(p):
for y in range(q):
if (imgl[x, y] == img2[x, y]).all():

s += 1

print('pourcentage de pixels communs : {} %'.format(np.floor(s / p / q * 100)))

FIGURE 2 - Les itérations de I'image matisse.png pour n = 67911 et n=1496775000382576200.

On obtient :
>>> pixels_communs(matisse, boulanger2(matisse, 67911))
pourcentage de pixels communs : 47.0 %

>>> pixels_communs(matisse, boulanger2(matisse, 1496775000382576200))
pourcentage de pixels communs : 89.0 %

page 5

