Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV. Systèmes du 1° et 2° ordre

A.IV.1 Introduction

A.IV.1.a Modélisation des systèmes

A.IV.1.a.i Fonction de transfert canonique

Les paragraphes précédents nous ont conduits à savoir modéliser un système, qu'il soit composé

- d'une seule fonction de transfert traduisant son comportement
- de plusieurs fonctions de transfert en chaîne directe
- de plusieurs fonctions de transfert dans un système asservi avec chaîne de retour

Les outils introduits nous permettent, dans tous les cas, de représenter le système avec un seul bloc contenant la fonction de transfert globale du système $H^n(p)$ d'ordre n:

$$E(p) \qquad H^{n}(p) \qquad S(p)$$

$$H^{n}(p) = \frac{b_{m}p^{m} + \dots + b_{1}p + b_{0}}{p^{\alpha}(a_{n}p^{n-\alpha} + \dots + a_{1}p + a_{0})} \quad ; a_{0} \neq 0$$

On cherchera toujours à exprimer la fonction de transfert $H^n(p)$ sous forme canonique. Cette forme laisse apparaître un facteur **1** au numérateur et au dénominateur sur le terme en p^0 :

$$H^{n}(p) = \frac{b_{0}}{a_{0}} \frac{1}{p^{\alpha}} \frac{\left(\frac{b_{m}}{b_{0}} p^{m} + \dots + \frac{b_{1}}{b_{0}} p + \mathbf{1}\right)}{\left(\frac{a_{n-\alpha}}{a_{0}} p^{n-\alpha} + \dots + \frac{a_{1}}{a_{0}} p + \mathbf{1}\right)}$$

On appelle gain statique de H^n le terme $K = \frac{b_0}{a_0} = \lim_{p \to 0} (p^{\alpha}H^n(p))$

La forme canonique de la fonction de transfert est donc la forme suivante :

$$\frac{K}{p^{\alpha}}\frac{\left(\frac{b_m}{b_0}p^m+\cdots+\frac{b_1}{b_0}p+\mathbf{1}\right)}{\left(\frac{a_{n-\alpha}}{a_0}p^{n-\alpha}+\cdots+\frac{a_1}{a_0}p+\mathbf{1}\right)}$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.1.a.ii Unités des termes d'une fonction de transfert

Comme il y a des termes 1 dans les polynômes au numérateur et au dénominateur de la fonction de transfert, tous les autres termes de ces polynômes doivent être homogènes à des nombres, c'est-à-dire :

$$\left[\frac{b_m}{b_0}p^m\right] = [\dots] = \left[\frac{b_1}{b_0}p\right] = [1]$$

$$\left[\frac{a_{n-\alpha}}{a_0}p^{n-\alpha}\right] = [\dots] = \left[\frac{a_1}{a_0}p\right] = [1]$$

Or, la multiplication par p dans le domaine de Laplace correspond à une dérivation, elle est donc homogène à des s^{-1} , on a donc :

$$\left[\frac{b_m}{b_0}\right] = s^m \quad ; \quad \dots \quad ; \quad \left[\frac{b_1}{b_0}\right] = s$$

$$\left[\frac{a_{n-\alpha}}{a_0}\right] = s^{n-\alpha} \quad ; \quad \dots \quad ; \quad \left[\frac{a_1}{a_0}\right] = s$$

Le gain statique K est tel que :

$$[s(t)] = [K]s^{\alpha}[e(t)]$$

Soit:

$$[K] = \frac{[s(t)]}{[e(t)]} \frac{1}{s^{\alpha}}$$

A.IV.1.a.iii Remarques

- On ne doit pas garder de termes inverses de puissances de p
- Une erreur courante est commise lorsque la fonction de transfert n'est pas exprimée uniquement sous forme d'un quotient de polynômes en p mais fait apparaître des fonctions de transfert. Dans ce cas, on ne peut pas obtenir la forme canonique de $H^n(p)$. Il faut d'abord exprimer les fonctions de transfert en quotients de polynômes et les remplacer dans $H^n(p)$.
- Veiller au plus possible à ne pas garder de quotients de quotients de polynômes, simplifier l'expression dans le but d'avoir un polynôme au numérateur et au dénominateur.

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.1.a.iv Ecart statique et gain statique

Pour un système de gain statique K et de classe 0 (on montrera en 2° année que cette condition est à l'origine de l'existence d'une valeur finale – stabilité), on a toujours

$$\varepsilon_s = E_0(1 - K)$$

En effet, avec une classe nulle, on a:

$$H^{n}(p) = K \frac{\left(\frac{b_{m}}{b_{0}} p^{m} + \dots + \frac{b_{1}}{b_{0}} p + \mathbf{1}\right)}{\left(\frac{a_{n}}{a_{0}} p^{n} + \dots + \frac{a_{1}}{a_{0}} p + \mathbf{1}\right)}$$

Par ailleurs:

$$E(p) - S(p) = E_0 - H^n(p)E_0 = E_0(1 - H^n(p))$$

Enfin, en appliquant le théorème de la valeur finale pour un échelon d'entrée $\frac{E_0}{p}$, le p du TVF annule le $\frac{1}{p}$ de l'échelon :

$$\varepsilon_{S} = \lim_{t \to +\infty} \left(E(p) - S(p) \right) = \lim_{p \to 0} E_{0} \left(1 - H^{n}(p) \right) = E_{0} \left[1 - \lim_{p \to 0} \left(H^{n}(p) \right) \right]$$

Or:

$$H^{n}(p) = \frac{K\left(\frac{b_{m}}{b_{0}}p^{m} + \dots + \frac{b_{1}}{b_{0}}p + \mathbf{1}\right)}{\left(\frac{a_{n}}{a_{0}}p^{n} + \dots + \frac{a_{1}}{a_{0}}p + \mathbf{1}\right)} {}_{0}^{\sim} K$$

Soit:

$$\varepsilon_s = E_0(1 - K)$$

Attention : bien que cette formule donne toujours une valeur, elle n'a de sens réel que si K est sans unité, c'est-à-dire si entrée et sortie sont de même unité. Un moteur qui transforme une tension en vitesse de rotation ne permet pas d'interpréter le résultat de ce calcul qui n'a aucun sens réel.

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.1.a.v Tangentes à l'origines de réponses indicielles de système d'ordres quelconques

Soit une fonction de transfert quelconque d'ordre n:

$$H^{n}(p) = K \frac{(n_{n}p^{m} + \dots + n_{1}p + 1)}{(d_{n}p^{n} + \dots + d_{1}p + 1)}$$

Soit une entrée de type échelon :

$$E(p) = \frac{E_0}{p}$$

On a:

$$S(p) = H^{n}(p) E(p) = \frac{KE_{0}}{p} \frac{(n_{n}p^{m} + \dots + n_{1}p + 1)}{(d_{n}p^{n} + \dots + d_{1}p + 1)}$$

Trouver la tangente à l'origine de s(t) est très simple dans Laplace en supposant des conditions initiales nulles :

$$s'(0) = \lim_{t \to +\infty} \left(p \mathcal{L} \left(s'(t) \right) \right) = \lim_{p \to +\infty} \left(p^2 S(p) \right) = \lim_{p \to +\infty} \left(p^2 \frac{KE_0}{p} \frac{(n_n p^m + \dots + n_1 p + \mathbf{1})}{(d_n p^n + \dots + d_1 p + \mathbf{1})} \right)$$
$$s'(0) = \lim_{p \to +\infty} \left(p KE_0 \frac{(n_n p^m + \dots + n_1 p + \mathbf{1})}{(d_n p^n + \dots + d_1 p + \mathbf{1})} \right)$$

Il suffira alors de garder les termes de plus haut degré au numérateur et au dénominateur et d'étudier cette limite.

Exemple:

$$H^{n}(p) = \frac{K}{1 + ap + bp^{2}}$$

$$s'(0) = \lim_{p \to +\infty} \left(pKE_{0} \frac{K}{1 + ap + b} \right) = \lim_{p \to +\infty} \left(\frac{pKE_{0}}{bp^{2}} \right) = \lim_{p \to +\infty} \left(\frac{KE_{0}}{b} \frac{1}{p} \right) = 0$$

On remarquera que toute fonction dont le numérateur est une constante et donc l'ordre est au minimum de 2 présente une réponse à un échelon de pente à l'origine nulle.

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.1.b Systèmes du 1° et du 2° ordre

Nous avons vu précédemment que quelle que soit la forme de la fonction de transfert d'un système causal, on peut la mettre sous la forme de somme de fractions rationnelles d'ordre 1 et 2 (cf décomposition en éléments simples). Une sortie d'un système d'ordre supérieur se décomposera donc toujours en somme de sorties de systèmes du premier et du second ordre.

Soit $H^n(p)$ la fonction de transfert d'un système d'ordre n > 2, on aura :

$$H^n(p) = \sum_j H^1_j(p) + \sum_j H^2_j(p)$$

Avec H_i^1 et H_i^2 des fonctions de transfert du premier et du second ordre.

Toute réponse S(p) d'un système d'ordre n s'écrit comme somme de réponses de systèmes d'ordre 1 et 2 :

$$S(p) = H^{n}(p)E(p) = \sum_{j} H_{j}^{1}(p)E(p) + \sum_{j} H_{j}^{2}(p)E(p)$$

Nous allons donc nous limiter dans l'étude des systèmes d'ordre 1 et 2 et nous saurons déterminer la réponse d'un système d'ordre quelconque.

A.IV.1.c Entrée échelon et rampe

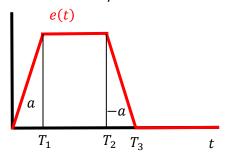
Nous avons abordé les entrées Dirac (peu utilisée), échelon et rampe. L'entrée sinusoïdale et les réponses harmoniques associées seront traitées dans un chapitre ultérieur.

Dans la plupart des asservissement qui seront étudiés, les entrée seront décomposables en sommes de signaux usuels de type échelon et rampe, et il suffira donc de savoir déterminer la réponse d'un système du 1° ou du 2° ordre à un échelon et à une rampe pour pouvoir donner la réponse complète du système à une entrée composée de ces entrées types.

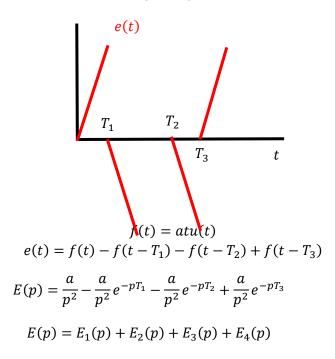
Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Exemples:

Soit le signal suivant, souvent imposé en entrée des systèmes linéaires :



Ce signal d'entré est en réalité la somme de 4 rampes de pente a et -a avec des retards différents:



Ainsi, la sortie d'un système soumis à cette entrée se décomposera en la somme de 4 réponses du système pour 4 rampes avec des retards différents.

$$S(p) = H(p)E(p) = H(p)E_1(p) + H(p)E_2(p) + H(p)E_3(p) + H(p)E_4(p)$$

Remarque : lors de la présence d'un retard sur l'entrée, on effectue la démarche de résolution dans le domaine de Laplace comme vue précédemment, en gardant en facteur le terme e^{-pT} , puis lors de l'application de la transformée de Laplace inverse, on déduit les fonctions temporelles en changeant (t) en (t-T) (ne pas oublier le u(t-T) qui annule la réponse à l'entrée retardée avant T

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.2 Systèmes du premier ordre

A.IV.2.a Généralités

A.IV.2.a.i Définition

Un système du premier ordre est décrit par une équation différentielle du premier ordre :

$$s(t) + T\frac{ds(t)}{dt} = Ke(t)$$

$$(K, T) > 0$$

Cette écriture de l'équation différentielle est la forme normalisée d'un système du premier ordre :

- T est la constante de temps du système (à ne pas confondre avec une période)
- *K* est le gain statique du système
- On définit aussi la pulsation de coupure du système : $\omega_0 = \frac{1}{T}$

A.IV.2.a.ii Fonction de transfert

Dans le cas de conditions initiales nulles, passons cette équation dans le domaine de Laplace :

$$S(p) + TpS(p) = KE(p)$$

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + Tp}$$

Cette écriture est la représentation canonique d'un système du premier ordre. Pour l'obtenir, il faut que le terme constant du dénominateur soit égal à 1.

A.IV.2.a.iii Unités des constantes

$$K$$
 est tel que : $[K] = \frac{[s(t)]}{[e(t)]}$

T est homogène à des secondes : [T] = s

A.IV.2.b Réponses temporelles d'un système du 1° ordre

Etudions la réponse des systèmes du 1° ordre à un échelon et à une rampe.

A.IV.2.b.i Réponse indicielle

Considérons un échelon en entrée du système :

$$e(t) = e_0 u(t)$$

$$E(p) = \frac{e_0}{p}$$

$$S(p) = H(p)E(p) = \frac{K}{1 + Tp} \frac{e_0}{p} = \frac{Ke_0}{p(1 + Tp)}$$

Page **66** sur **111**

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

La décomposition en éléments simples de S(p) est de la forme :

$$S(p) = \frac{A}{p} + \frac{B}{1 + Tp}$$

Déterminons A et B:

$$S(p) = \frac{A + ATp + Bp}{p(1 + Tp)} = \frac{(AT + B)p + A}{p(1 + Tp)}$$

Soit:

$$\begin{cases}
AT + B = 0 \\
A = Ke_0
\end{cases}$$

$$\begin{cases}
B = -Ke_0T \\
A = Ke_0
\end{cases}$$

$$S(p) = \frac{Ke_0}{p} - \frac{Ke_0T}{1 + Tp} = Ke_0 \left[\frac{1}{p} - \frac{T}{1 + Tp} \right] = Ke_0 \left[\frac{1}{p} - \frac{1}{p + \frac{1}{T}} \right]$$

Appliquons la transformée de Laplace inverse à S(p) afin de déterminer la réponse temporelle d'un système du premier ordre à une entrée échelon

$$s(t) = Ke_0 \left[1 - e^{-\frac{t}{T}} \right] u(t)$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Quelques caractéristiques sont à connaître :

En t = T, on a: $y = Ke_0 = s_{\infty}$

Valeur finale s_{∞}	Réponse à $t=T$
$s_{\infty} = \lim_{t \to +\infty} s(t)$ $s_{\infty} = \lim_{t \to +\infty} \left[Ke_0 \left(1 - e^{-\frac{t}{T}} \right) \right]$ $s_{\infty} = Ke_0$ $s_{\infty} = \lim_{p \to 0^+} pS(p) = \lim_{p \to 0^+} p \frac{K}{1 + Tp} \frac{e_0}{p}$ $s_{\infty} = \lim_{p \to 0^+} \frac{Ke_0}{1 + Tp} = Ke_0$ L'écart statique vaut donc : $\varepsilon_S = \lim_{t \to +\infty} \left[e(t) - s(t) \right]$ $\varepsilon_S = e_0 - Ke_0 = e_0(1 - K)$	$s(T) = Ke_0 \left[1 - e^{-\frac{T}{T}} \right]$ $s(T) = Ke_0 \left[1 - \frac{1}{e} \right]$ $s(T) = 0,63Ke_0$ $s(T) = 0,63s_{\infty}$
Pente à l'origine $s'(0^+)$	Temps de réponse à 5% $t_{r_{5\%}}$
$s'(t) = \frac{K}{T}e_0e^{-\frac{t}{T}}$ $s'(0^+) = \frac{Ke_0}{T}$ Soit la droite tangente à l'origine de $s(t)$ $y = \frac{Ke_0}{T}t$	$s(t_{r_{5\%}}) = 0.95s_{\infty}$ $Ke_{0} \left[1 - e^{-\frac{t_{r_{5\%}}}{T}} \right] = 0.95Ke_{0}$ $1 - e^{-\frac{t_{r_{5\%}}}{T}} = 0.95$ $e^{-\frac{t_{r_{5\%}}}{T}} = 0.05$

Propriétés de la tangente en un point quelconque

A tout instant t_1 , la dérivée de cette réponse vaut :

$$s'(t_1) = \frac{K}{T}e_0e^{-\frac{t_1}{T}}$$

La droite qui passe par le point $(t_1, s(t_1))$ et de pente $s'(t_1)$ a pour équation :

$$y(t) = s(t_1) + (t - t_1)s'(t_1) = Ke_0 \left(1 - e^{-\frac{t_1}{T}}\right) + t\frac{Ke_0}{T}e^{-\frac{t_1}{T}}$$
 Cette droite coupe la valeur $s_\infty = Ke_0$ en t_2 tel que
$$y(t_2) = Ke_0 \left(1 - e^{-\frac{t_1}{T}}\right) + (t_2 - t_1)\frac{Ke_0}{T}e^{-\frac{t_1}{T}} = Ke_0$$

$$1 - e^{-\frac{t_1}{T}} + \frac{t_2 - t_1}{T}e^{-\frac{t_1}{T}} = 1$$

$$-1 + \frac{t_2 - t_1}{T} = 0$$

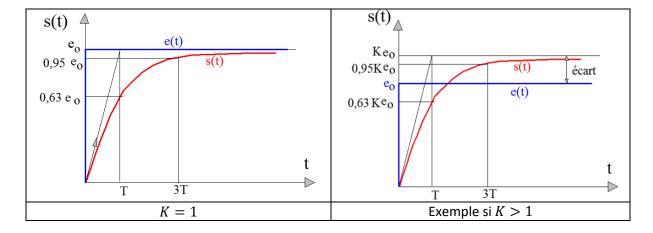
$$t_2 - t_1 = T$$

$$t_2 = t_1 + T$$
 Ainsi, à tout moment, la tangente en un point coupe l'asymptote finale T secondes plus tard

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Conclusions : un système du premier ordre de fonction de transfert $\frac{K}{1+Tp}$ à un échelon de valeur e_0

- A sa réponse qui tend vers $s_{\infty}=Ke_{0}$
- A un écart statique valant $arepsilon_{\mathcal{S}} = e_0(1-K)$, nul si K=1
- A sa pente à l'origine qui coupe la valeur finale s_{∞} à t=T
- Atteint 63% de sa valeur finale s_{∞} à t=T
- A un temps de réponse à 5% tel que $t_{r_{5\%}} pprox 3T$
- A tout instant, la tangente à la réponse coupe la valeur finale T secondes plus tard



Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.2.b.ii Réponse à une rampe

Considérons une rampe en entrée du système :

$$e(t) = atu(t)$$

$$E(p) = \frac{a}{p^2}$$

$$S(p) = H(p)E(p) = \frac{K}{1 + Tp} \frac{a}{p^2} = \frac{Ka}{p^2(1 + Tp)}$$

La décomposition en éléments simples de S(p) est de la forme :

$$S(p) = \frac{A}{p} + \frac{B}{p^2} + \frac{C}{1 + Tp}$$

Déterminons A, B et C:

$$S(p) = \frac{Ap + B}{p^2} + \frac{p^2C}{p^2(1 + Tp)} = \frac{Ap + B + ATp^2 + TBp + p^2C}{p^2(1 + Tp)} = \frac{(AT + C)p^2 + (A + TB)p + B}{p^2(1 + Tp)}$$

Soit:

$$\begin{cases} AT + C = 0 \\ A + TB = 0 \\ B = Ka \end{cases}$$

$$\begin{cases} C = -AT = KaT^2 \\ A = -TB = -KaT \\ B = Ka \end{cases}$$

$$S(p) = -\frac{KaT}{p} + \frac{Ka}{p^2} + \frac{KaT^2}{1 + Tp}$$

$$S(p) = Ka \left[\frac{1}{p^2} - \frac{T}{p} + T \frac{1}{p + \frac{1}{T}} \right]$$

Appliquons la transformée de Laplace inverse à S(p) afin de déterminer la réponse temporelle d'un système du premier ordre à une entrée rampe

$$s(t) = Ka \left[t - T + Te^{-\frac{t}{T}} \right] u(t)$$
$$s(t) = Ka \left[t - T \left(1 - e^{-\frac{t}{T}} \right) \right] u(t)$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

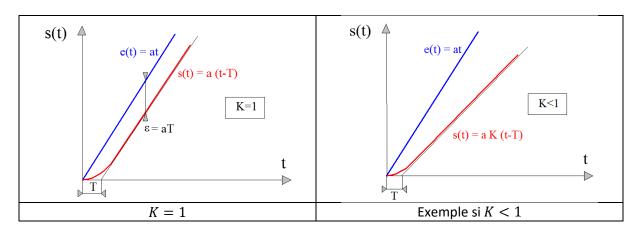
Quelques caractéristiques sont à connaître :

Asymptote à l'infini a_{∞} $Ka\left(t-T+Te^{-\frac{t}{T}}\right)u(t)$ $\stackrel{\sim}{+}_{\infty}$ Ka(t-T) $a_{\infty} = Ka(t-T)$ Ecart de poursuite ε_v Méthode temporelle $\varepsilon_v = \lim_{t \to +\infty} [e(t) - s(t)]$ $\varepsilon_v = \lim_{t \to +\infty} [at - Ka(t - T)]$ $\varepsilon_{v} = \lim_{t \to +\infty} [at(1 - K) + KaT]$ K = 1 $\varepsilon_v = \lim_{t \to +\infty} [at(1 - K) + KaT]$ $\varepsilon_v = \pm \infty$ $\varepsilon_v = \lim_{t \to +\infty} [aT]$ $\varepsilon_v = aT$ Méthode Laplace Détaillons ce calcul car il présente une petite particularité : $\varepsilon_{v} = \lim_{t \to +\infty} [e(t) - s(t)] = \lim_{p \to 0^{+}} p[E(p) - S(p)] = \lim_{p \to 0^{+}} p\left[\frac{a}{p^{2}} - \frac{K}{1 + Tp}\frac{a}{p^{2}}\right]$ $\varepsilon_{v} = \lim_{p \to 0^{+}} \frac{a}{p} \left[1 - \frac{K}{1 + Tp}\right] = \lim_{p \to 0^{+}} \frac{a}{p} \left[\frac{1 + Tp - K}{1 + Tp}\right] = \lim_{p \to 0^{+}} \left[\frac{a(1 - K) + aTp}{p + Tp^{2}}\right]$ Selon la valeur de K, cette fraction n'a pas le même équivalent ϵ $\frac{K = 1}{a(1 - K) + aTp} \underbrace{aTp}_{p + Tp^{2}} \underbrace{aTp}_{0} \underbrace{aTp}_{p} \underbrace{aT}_{0}$ $\frac{K \neq 1}{a(1-K) + aTp} \underset{0}{\sim} \frac{a(1-K)}{p + Tp^{2}} \underset{0}{\sim} \frac{a(1-K)}{p}$ $\varepsilon_{v} = \pm \infty$ Pente à l'origine $s'(0^+)$ $s'(t) = Ka \left[1 - e^{-\frac{t}{T}} \right] u(t)$

Conclusions : un système du premier ordre de fonction de transfert $\frac{K}{1+Tp}$ à une rampe de coefficient directeur a

- A une pente à l'origine nulle
- Tend vers une asymptote d'équation y = Ka(t T)
- Dans le cas où K=1
 - o cette asymptote est parallèle à la consigne
 - o elle correspond à une translation de l'entrée d'un vecteur $T\vec{x}$
 - o l'écart de poursuite en régime permanent vaut $\varepsilon_v = aT$
 - \circ tout se passe comme si la sortie suivait l'entrée avec un retard T
- Dans le cas où $K \neq 1$
 - o cette asymptote n'est pas parallèle à la consigne
 - o l'écart de poursuite tend vers une valeur infinie

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours



A.IV.2.b.iii Bilan des performances d'un système du 1° ordre

Rapidité	Stabilité	Précision
$t_{r_{5\%}} \approx 3T$	La réponse n'oscille pas Système stable	Pas de dépassement $s_{\infty}=Ke_0$ $\varepsilon_s=e_0(1-K)$ $\varepsilon_v=\left\{ \begin{matrix} aT\ si\ K=1\\ \pm\infty\ si\ K\neq 1 \end{matrix} \right.$
Autre		
$s'(0^{+}) = \begin{cases} \frac{Ke_0}{T} & \text{si } e(t) = e_0 u(t) \\ s'(0^{+}) = 0 & \text{si } e(t) = bt u(t) \end{cases}$		

Remarques:

- Il est souvent plus parlant de donner un écart statique en % de la valeur de consigne afin d'évaluer la précision du système :

$$\varepsilon_s = e_0(1 - K) = \frac{e_0(1 - K)}{e_0}\% = (1 - K)\%$$

- Rappelons que parler d'écart n'a de sens que si l'on compare deux grandeurs de même unité

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.3 Systèmes du second ordre

A.IV.3.a Généralités

A.IV.3.a.i Définition

Un système du deuxième ordre est décrit par une équation différentielle du deuxième ordre :

$$s(t) + \frac{2z}{\omega_0} \frac{ds(t)}{dt} + \frac{1}{\omega_0^2} \frac{d^2s(t)}{dt^2} = Ke(t)$$

$$(K, \omega_0, z) > 0$$

Cette écriture de l'équation différentielle est la forme normalisée d'un système du deuxième ordre :

- z est le coefficient d'amortissement du système
- K est le gain statique du système
- ω_0 est la pulsation propre non amortie

A.IV.3.a.ii Fonction de transfert

Dans le cas de conditions initiales nulles, passons cette équation dans le domaine de Laplace :

$$S(p) + \frac{2z}{\omega_0} pS(p) + \frac{1}{{\omega_0}^2} p^2 S(p) = KE(p)$$

$$S(p) \left[1 + \frac{2z}{\omega_0} p + \frac{1}{{\omega_0}^2} p^2 \right] = KE(p)$$

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \frac{2z}{\omega_0} p + \frac{1}{{\omega_0}^2} p^2}$$

Cette écriture est la représentation canonique d'un système du second ordre. Pour l'obtenir, il faut que le terme constant du dénominateur soit égal à 1.

A.IV.3.a.iii Unités des constantes

$$K$$
 est tel que : $[K] = \frac{[s(t)]}{[e(t)]}$

 ω_0 est une pulsation en $rd.s^{-1}$

z est un nombre sans dimensions

On a alors bien :
$$\left[\frac{1}{\omega_0^2}p^2\right] = \left[\frac{2z}{\omega_0}p\right] = [1]$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.3.b Réponses temporelles d'un système du 2° ordre

Etudions la réponse des systèmes du 2° ordre à un échelon et à une rampe.

A.IV.3.b.i Préliminaires

Selon les valeurs des coefficients du système, il est possible ou non de factoriser le dénominateur de la fonction de transfert, ce qui va avoir une influence sur les formes de décomposition en éléments simples de la sortie recherchés.

$$D(p) = \frac{1}{{\omega_0}^2} p^2 + \frac{2z}{\omega_0} p + 1 \quad ; \quad \Delta = \frac{4z^2}{{\omega_0}^2} - \frac{4}{{\omega_0}^2} = 4\frac{z^2 - 1}{{\omega_0}^2}$$

$z>1$ $\Delta>0$ Soient p_1 et p_2 les racines de	z = 1	z < 1
D(p)	Δ= 0	Δ < 0 Le dénominateur ne peut être factorisé $H(n) = \frac{K}{m}$
$p_{i} = \omega_{0} \left(-z \pm \sqrt{z^{2} - 1} \right)$ $D(p) = k(p - p_{1})(p - p_{2})$ $= kp^{2} - k(p_{1} + p_{2})p + kp_{1}p_{2}$ $= \frac{1}{\omega_{0}^{2}}p^{2} + \frac{2z}{\omega_{0}}p + 1$ $\text{Soit : } k = \frac{1}{p_{1}p_{2}}$	Soit p_0 la racine double de $D(p)$ $p_0 = -z\omega_0 = -\omega_0$ $D(p) = k(p - p_0)^2$ $= kp^2 - 2kp_0p + kp_0^2$	$H(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$ $H(p) = \frac{K\omega_0^2}{\omega_0^2 + 2z\omega_0p + p^2}$ $D(p) = p^2 + 2z\omega_0p + \omega_0^2$ $\Delta = 4z^2\omega_0^2 - 4\omega_0^2$ $\Delta = -4\omega_0^2(1 - z^2) < 0$
$H(p) = \frac{K}{\frac{1}{p_1 p_2} (p - p_1)(p - p_2)}$ $= \frac{K}{\left(\frac{p}{p_1} - 1\right) \left(\frac{p}{p_2} - 1\right)}$	$= \frac{1}{\omega_0^2} p^2 + \frac{2z}{\omega_0} p + 1$ Soit: $k = \frac{1}{p_0^2}$ $H(p) = \frac{1}{p_0^2} (p - p_0)^2$ K	$p_{i} = -z\omega_{0} \pm i\omega_{0}\sqrt{1-z^{2}}$ $p_{i} = -a \pm i\omega_{n}$ $D(p) = k(p-p_{1})(p-p_{2})$ $D(p) = k(p+a-i\omega_{n})(p+a+i\omega_{n})$ $= \cdots$ $= kp^{2} + 2kap + k(a^{2} + \omega_{n}^{2})$ $a^{2} + \omega_{n}^{2} = z^{2}\omega_{0}^{2} + \omega_{0}^{2}(1-z^{2})$
$T_{i} = -\frac{1}{p_{i}} = \frac{1}{\omega_{i}}$ $= \frac{K}{[-(1+T_{1}p)][-(1+T_{2}p)]}$ $H(p) = \frac{K}{(1+T_{1}p)(1+T_{2}p)}$	$= \frac{K}{\frac{1}{p_0^2} p_0^2 \left(\frac{p}{p_0} - 1\right)^2}$ $T = -\frac{1}{p_0} = \frac{1}{\omega_0}$ $= \frac{K}{[-(1+Tp)^2]}$	$= \omega_0^2$ $D(p) = kp^2 + 2kap + k\omega_0^2$ $= p^2 + 2z\omega_0 p + \omega_0^2$ Soit: $k = 1$ $H(p) = \frac{K\omega_0^2}{(p - p_1)(p - p_2)}$ $(p - p_1)(p - p_2)$
$\omega_i = \omega_0 \left(z \pm \sqrt{z^2 - 1} \right)$ $min(\omega_i) < \omega_0 < max(\omega_i)$ Remarques: $z - \sqrt{z^2 - 1} < 1 < z + \sqrt{z^2 - 1}$ $\begin{cases} T_1 + T_1 = -\frac{2z}{\omega_0} \\ T_1 T_2 = \frac{1}{\omega_0} \end{cases}$	$H(p) = \frac{K}{(1+Tp)^2}$ $T = \frac{1}{\omega_0}$	$= p^{2} + 2ap + a^{2} + \omega_{n}^{2}$ $= (p+a)^{2} + \omega_{n}^{2}$ $H(p) = \frac{K\omega_{0}^{2}}{(p+a-i\omega_{n})(p+a+i\omega_{n})}$ $H(p) = \frac{K\omega_{0}^{2}}{(p+a)^{2} + \omega_{n}^{2}}$ $a = z\omega_{0} ; \omega_{n} = \omega_{0}\sqrt{1-z^{2}}$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.3.b.ii Réponse indicielle

$$e(t) = e_0 u(t)$$

$$E(p) = \frac{e_0}{p}$$

$$S(p) = H(p)E(p) = \frac{Ke_0}{p\left(1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2\right)}$$

• Caractéristiques de la réponse temporelle indicielle en 0 et $+\infty$

Avant de prendre en compte les différents cas possibles, étudions les limites en 0 et $+\infty$ de s(t):

En 0	En +∞
Théorème de la valeur initiale	Théorème de la valeur finale Résultat valable uniquement le système est stable
$s_0 = \lim_{t \to 0^+} s(t) = \lim_{p \to +\infty} pS(p)$ $s_0 = \lim_{p \to +\infty} \left[\frac{Ke_0}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2} \right]$ $s_0 = 0$	$s_{\infty} = \lim_{t \to +\infty} s(t) = \lim_{p \to 0^+} pS(p)$ $s_{\infty} = \lim_{p \to 0^+} \left[\frac{Ke_0}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2} \right]$ $s_{\infty} = Ke_0$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

De même, nous pouvons étudier la pente à l'origine de la sortie $s'_0 = s'(0)$:

$$s'_{0} = \lim_{t \to 0^{+}} s'(t) = \lim_{p \to +\infty} p \mathcal{L}(s'(t)) = \lim_{p \to +\infty} p^{2} S(p) = \lim_{p \to +\infty} \left[\frac{p^{2} K e_{0}}{p \left(1 + \frac{2z}{\omega_{0}} p + \frac{1}{\omega_{0}^{2}} p^{2}\right)} \right]$$
$$s'_{0} = \lim_{p \to +\infty} \left[\frac{p K e_{0}}{1 + \frac{2z}{\omega_{0}} p + \frac{1}{\omega_{0}^{2}} p^{2}} \right] = 0$$

Premières conclusions:

- La tangente à l'origine de la réponse indicielle d'un système du second ordre est horizontale.
- Si le système est stable, sa réponse asymptotiquement vers sa valeur finale $s_\infty=Ke_0$ et l'écart statique vaut $\varepsilon_{\rm S}=e_0(1-K)$

• Réponse temporelle complète

Pour déterminer la forme des réponses temporelles à un échelon, nous devons décomposer les réponses en fonction du cas concerné parmi les 3 cas mis en évidence précédemment.

Cas n°1 $z > 1$	Cas n°2 $z = 1$	Cas n°3 $z < 1$
$S(p) = \frac{K}{(1 + T_1 p)(1 + T_2 p)} \frac{e_0}{p}$ $S(p) = \frac{K e_0}{p(1 + T_1 p)(1 + T_2 p)}$	$S(p) = \frac{K}{(1+Tp)^2} \frac{e_0}{p}$ $S(p) = \frac{Ke_0}{p(1+Tp)^2}$	$S(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2} \frac{e_0}{p}$ $S(p) = \frac{Ke_0\omega_0^2}{p[(p+a)^2 + \omega_n^2]}$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

• $Cas n^{\circ}1 : z > 1$

$$S(p) = \frac{Ke_0}{p(1+T_1p)(1+T_2p)}$$

$$S(p) = \frac{A}{p} + \frac{B}{1+T_1p} + \frac{C}{1+T_2p}$$

$$S(p) = \frac{A+(AT_1+B)p}{p(1+T_1p)} + \frac{C+CT_1p}{(1+T_1p)(1+T_2p)}$$

$$S(p) = \frac{A+(AT_1+B)p+AT_2p+(AT_1+B)T_2p^2+Cp+CT_1p^2}{p(1+T_1p)(1+T_2p)}$$

$$S(p) = \frac{(AT_1T_2+BT_2+CT_1)p^2+(A(T_1+T_2)+B+C)p+A}{p(1+T_1p)(1+T_2p)}$$

$$\begin{cases} A=Ke_0\\A(T_1+T_2)+B+C=0\\A(T_1T_2+BT_2+CT_1=0) \end{cases}$$

$$\begin{cases} A=Ke_0\\B=-C-Ke_0(T_1+T_2)\\Ke_0T_1T_2-CT_2-Ke_0(T_1+T_2)T_2+CT_1=0 \end{cases}$$

$$\begin{cases} A=Ke_0\\B=-C-Ke_0(T_1+T_2)T_2+CT_1=0 \end{cases}$$

$$\begin{cases} A=Ke_0\\B=-C-Ke_0(T_1+T_2)T_2+CT_1=0 \end{cases}$$

$$\begin{cases} A=Ke_0\\T=-C-Ke_0(T_1+T_2)T_2+CT_1=0 \end{cases}$$

$$A=Ke_0\\T=-C-Ke_0(T_1+T_2)T_2+CT_1=0 \end{cases}$$

$$\begin{cases} A=Ke_0\\T=-C-Ke_0(T_1+T_2)T_2+CT_1=0 \end{cases}$$

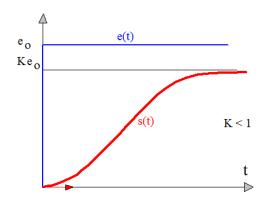
$$S(p) = \frac{Ke_0}{p} + \frac{Ke_0T_1^2}{T_2-T_1} + \frac{1}{T_2-T_1} - \frac{Ke_0T_2^2}{T_2-T_1} + \frac{1}{T_2-T_1} \end{bmatrix}$$

$$S(p) = \frac{Ke_0}{p} + \frac{Ke_0}{T_2-T_1} + \frac{1}{T_1} - \frac{T_2}{p} + \frac{1}{T_2} \end{bmatrix}$$

$$S(t) = Ke_0 \left[1 + \frac{1}{T_2-T_1} \left[T_1e^{-\frac{t}{T_1}} - T_2e^{-\frac{t}{T_2}} \right] \right] u(t)$$

Régime apériodique z>1

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours



Ainsi, dans le cas où z>1, le système répond de manière non oscillante et amortie.

• $Cas n^{\circ}2 : z = 1$

$$S(p) = \frac{Ke_0}{p(1+Tp)^2}$$

$$S(p) = \frac{A}{p} + \frac{B}{1+Tp} + \frac{C}{(1+Tp)^2}$$

$$S(p) = \frac{A + (AT+B)p}{p(1+Tp)} + \frac{Cp}{p(1+Tp)^2}$$

$$S(p) = \frac{(AT+B)Tp^2 + (2AT+B+C)p + A}{p(1+Tp)^2}$$

$$\begin{cases} (AT+B)T = 0\\ 2AT+B+C = 0\\ A = Ke_0 \end{cases}$$

$$\begin{cases} B = -AT = -Ke_0T\\ C = -Ke_0T\\ A = Ke_0 \end{cases}$$

$$S(p) = Ke_0 \left[\frac{1}{p} - \frac{T}{1+Tp} - \frac{T}{(1+Tp)^2} \right] = Ke_0 \left[\frac{1}{p} - \frac{1}{p+\frac{1}{T}} - \frac{1}{T} \frac{1}{\left(p+\frac{1}{T}\right)^2} \right]$$

$$S(t) = Ke_0 \left[1 - e^{-\frac{t}{T}} - \frac{1}{T}te^{-\frac{t}{T}} \right] u(t)$$

$$S(t) = Ke_0 \left[1 - e^{-\frac{t}{T}} \left(1 + \frac{t}{T} \right) \right] u(t)$$
Régime apériodique critique $z = 1$

Ici encore, la réponse est apériodique. C'est un régime limite avec le cas n°1 présentant la même courbe de réponse. Il sera donc appelé critique

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

• Cas $n^{\circ}3:z<1$

$$S(p) = \frac{Ke_0\omega_0^2}{p[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{A}{p} + \frac{Bp + C}{(p+a)^2 + \omega_n^2}$$

$$S(p) = \frac{A[(p+a)^2 + \omega_n^2]}{pp[(p+a)^2 + \omega_n^2]} + \frac{Bp^2 + Cp}{p[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{Ap^2 + 2Aap + Aa^2 + A\omega_n^2 + Bp^2 + Cp}{p[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{(A+B)p^2 + (2Aa + C)p + A(a^2 + \omega_n^2)}{p[(p+a)^2 + \omega_n^2]}$$

$$\begin{cases} A+B=0\\ 2Aa+C=0\\ A(a^2 + \omega_n^2) = Ke_0\omega_0^2 \end{cases}$$

$$\begin{cases} A=\frac{Ke_0\omega_0^2}{a^2 + \omega_n^2} = \frac{Ke_0\omega_0^2}{z^2\omega_0^2 + \omega_0^2(1-z^2)} = Ke_0 \end{cases}$$

$$S(p) = \frac{Ke_0}{p} + \frac{-Ke_0p - 2aKe_0}{(p+a)^2 + \omega_n^2}$$

$$S(p) = Ke_0 \left[\frac{1}{p} - \frac{p+2a}{(p+a)^2 + \omega_n^2} \right]$$

$$S(p) = Ke_0 \left[\frac{1}{p} - \frac{p+2a}{(p+a)^2 + \omega_n^2} - \frac{a}{\omega_n} \frac{\omega_n}{(p+a)^2 + \omega_n^2} \right]$$

$$s(t) = Ke_0 \left[1 - e^{-at} \cos(\omega_n t) - \frac{a}{\omega_n} e^{-at} \sin(\omega_n t) \right] u(t)$$

$$s(t) = Ke_0 \left[1 - e^{-at} \left(\cos(\omega_n t) + \frac{a}{\omega_n} \sin(\omega_n t) \right) \right] u(t)$$

$$\cos(\omega_n t) + \frac{a}{\omega_n} \sin(\omega_n t) = \sqrt{1 + \frac{a^2}{\omega_n^2}} \frac{\cos(\omega_n t) + \frac{a}{\omega_n} \sin(\omega_n t)}{\sqrt{1 + \frac{a^2}{\omega_n^2}}}$$

$$= \sqrt{1 + \frac{a^2}{\omega_n^2}} \frac{1}{\sqrt{1 + \frac{a^2}{\omega_n^2}}} \sin(\omega_n t) + \frac{a}{\omega_n} \sin(\omega_n t)$$

Page **79** sur **111**

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Calculons:

$$\sqrt{1 + \frac{a^2}{{\omega_n}^2}} = \sqrt{\frac{{\omega_0}^2 (1 - z^2) + z^2 {\omega_0}^2}{{\omega_0}^2 (1 - z^2)}} = \sqrt{\frac{{\omega_0}^2}{{\omega_0}^2 (1 - z^2)}} = \frac{1}{\sqrt{1 - z^2}}$$

Ainsi:

$$\cos(\omega_n t) + \frac{a}{\omega_n} \sin(\omega_n t)$$

$$= \frac{1}{\sqrt{1 - z^2}} \left[\frac{1}{\frac{1}{\sqrt{1 - z^2}}} \cos(\omega_n t) + \frac{\frac{a}{\omega_n}}{\frac{1}{\sqrt{1 - z^2}}} \sin(\omega_n t) \right]$$

$$= \frac{1}{\sqrt{1 - z^2}} \left[\sqrt{1 - z^2} \cos(\omega_n t) + \frac{a\sqrt{1 - z^2}}{\omega_n} \sin(\omega_n t) \right]$$

$$= \frac{1}{\sqrt{1 - z^2}} \left[\sqrt{1 - z^2} \cos(\omega_n t) + z \sin(\omega_n t) \right]$$

Soit ∮ tel que

$$\sin \phi = \sqrt{1 - z^2} \in [0; 1]$$

$$\cos \phi = z \in [0; 1]$$

$$\tan \phi = \frac{\sqrt{1 - z^2}}{z}$$

$$\phi = \tan^{-1} \frac{\sqrt{1 - z^2}}{z}$$

Alors

$$\cos(\omega_n t) + \frac{a}{\omega_n} \sin(\omega_n t) = \frac{1}{\sqrt{1-z^2}} [\sin\phi\cos(\omega_n t) + \cos\phi\sin(\omega_n t)] = \frac{1}{\sqrt{1-z^2}} \sin(\omega_n t + \phi)$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Finalement

$$s(t) = Ke_0 \left[1 - \frac{e^{-z\omega_0 t}}{\sqrt{1-z^2}} \sin(\omega_n t + \phi) \right] u(t)$$

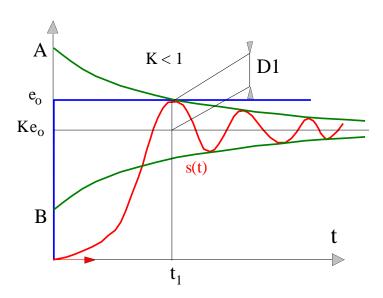
$$\omega_n = \omega_0 \sqrt{1-z^2}$$

$$\phi = \tan^{-1} \frac{\sqrt{1-z^2}}{z}$$
 Régime pseudopériodique $z < 1$

La réponse temporelle d'un système du second ordre en régime pseudopériodique

- Est déphasée de $\phi = \tan^{-1} \frac{\sqrt{1-z^2}}{z}$
- A une pseudo pulsation de $\omega_n=\omega_0\sqrt{1-z^2}$ et une pseudo période de $T_n=\frac{2\pi}{\omega_n}=\frac{2\pi}{\omega_0\sqrt{1-z^2}}$
- Est une sinusoïdale amortie encadrée par deux exponentielles d'équations

$$y(t) = Ke_0 \left[1 \pm \frac{e^{-z\omega_0 t}}{\sqrt{1 - z^2}} \right]$$



Cette réponse présente plusieurs maximums, les premiers correspondant généralement à des dépassements. On caractérise l'amortissement du système à l'aide du premier dépassement. Pour le déterminer, il suffit d'annuler la dérivée de la réponse temporelle :

$$S(p) = \frac{Ke_0\omega_0^2}{p[(p+a)^2 + \omega_n^2]}$$

$$\mathcal{L}(s'(t)) = pS(p) - s(0^+) = pS(p)$$

$$\mathcal{L}(s'(t)) = Ke_0\frac{{\omega_0}^2}{(p+a)^2 + {\omega_n}^2} = \frac{Ke_0{\omega_0}^2}{\omega_n} \frac{\omega_n}{(p+a)^2 + {\omega_n}^2}$$
 Page **81** sur **111**

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

$$s'(t) = \frac{Ke_0\omega_0^2}{\omega_0\sqrt{1-z^2}}e^{-z\omega_0t}\sin(\omega_n t)u(t)$$
$$s'(t) = \frac{Ke_0\omega_0}{\sqrt{1-z^2}}e^{-z\omega_0t}\sin(\omega_n t)u(t)$$
$$s'(t) = 0 \Leftrightarrow \omega_n t = k\pi$$

Le premier maximum est atteint pour k=1 (les suivants étant atteints pour des valeurs de k impaires, les nombres pairs correspondant à des minimums)

$$t_1 = \frac{\pi}{\omega_n} = \frac{\pi}{\omega_0 \sqrt{1 - z^2}} = \frac{T_n}{2}$$

Le premier maximum est donc atteint après un temps correspondant à un demie pseudo période du signal.

$$\begin{split} s(t_1) &= Ke_0 \left[1 - \frac{e^{-\frac{\pi z}{\sqrt{1-z^2}}}}{\sqrt{1-z^2}} \sin(\pi + \phi) \right] \\ s(t_1) &= Ke_0 \left[1 + \frac{e^{-\frac{\pi z}{\sqrt{1-z^2}}}}{\sqrt{1-z^2}} \sin(\phi) \right] \\ s(t_1) &= Ke_0 \left[1 + e^{-\frac{\pi z}{\sqrt{1-z^2}}} \right] \end{split}$$

On définit le dépassement relatif comme le rapport :

$$D_{i\%} = \frac{s(t_i) - s(+\infty)}{s(+\infty)}$$

Ainsi, le premier dépassement relatif vaut :

$$D_{1\%} = \frac{s(t_1) - s(+\infty)}{s(+\infty)} = \frac{Ke_0 \left[1 + e^{-\frac{\pi z}{\sqrt{1 - z^2}}} \right] - Ke_0}{Ke_0}$$

$$D_{1\%} = e^{-\frac{\pi z}{\sqrt{1 - z^2}}}$$

 ${D_1}_\%\epsilon[0;1]$ et s'emprime en % de 0 à 100%

Cette valeur ne dépend que de l'amortissement z

Le dépassement réel obtenu vaut donc :

$$D_1 = D_{1\%} s_{\infty} = K e_0 D_{1\%}$$

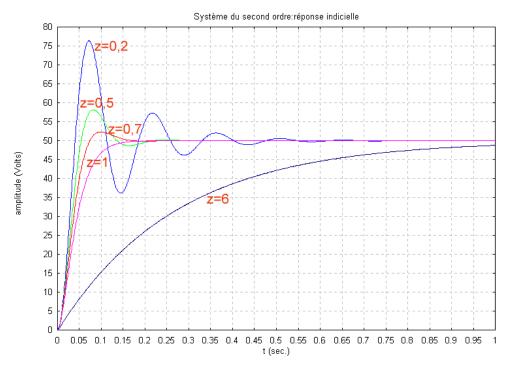
Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

• Résumé de la réponse à un échelon d'un 2° ordre

Un système du second ordre répondant à un échelon présente

- Un écart statique valant $\varepsilon_{\rm S}=e_0(1-K)$
- Une réponse sans dépassement ni oscillations si $z \ge 1$
- Une réponse avec dépassements et oscillations si z < 1

La figure ci-dessous présente des réponses temporelles d'un système du 2° ordre pour le même échelon et différentes valeurs du coefficient d'amortissement z



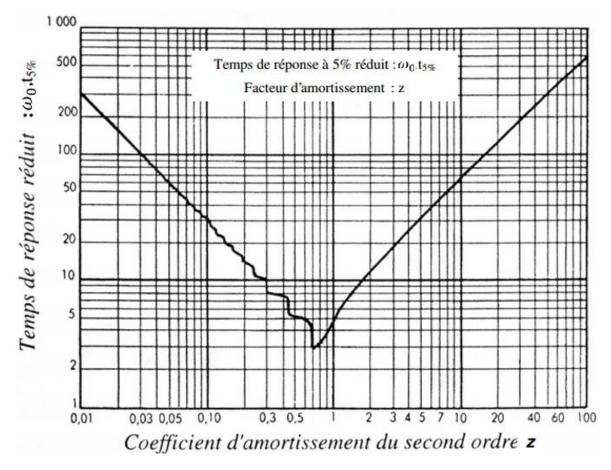
	Résumé des réponses à un échelon d'un 2° ordre		
z > 1	$s(t) = Ke_0 \left[1 + \frac{1}{T_2 - T_1} \left[T_1 e^{-\frac{t}{T_1}} - T_2 e^{-\frac{t}{T_2}} \right] \right]$		
z = 1	$s(t) = Ke_0 \left[1 - e^{-\frac{t}{T}} \left(1 + \frac{t}{T} \right) \right]$		
z < 1	$s(t) = Ke_0 \left[1 - \frac{e^{-z\omega_0 t}}{\sqrt{1 - z^2}} \sin(\omega_n t + \phi) \right] u(t)$ $\omega_n = \omega_0 \sqrt{1 - z^2}$ $\phi = \tan^{-1} \frac{\sqrt{1 - z^2}}{z}$		

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Rapidité des systèmes du second ordre en fonction de z

	z < 1		z = 1	z > 1
Régime pseudo périodique $\omega_n = \omega_0 \sqrt{1-z^2}$		Régime apériodique critique	Régime apériodique	
$z < \frac{\sqrt{2}}{2}$	$z = \frac{\sqrt{2}}{2} \approx 0.7$	$z > \frac{\sqrt{2}}{2}$		
Régime oscillant	Régime LE PLUS RAPIDE Présence d'un dépassement $D_{1\%} = e^{-\frac{\pi z}{\sqrt{1-z^2}}}$ $D_{1\%} = e^{-\pi}$ $= 4,3\%$ $t_1 = \frac{\pi}{\omega_0 \sqrt{1-z^2}}$	Régime oscillant	Le plus rapide sans dépassement	Régime amorti Lent

Pour un système du second ordre, le temps de réponse à 5% d'une réponse indicielle dépend du facteur d'amortissement. La courbe suivante permet de le déterminer :

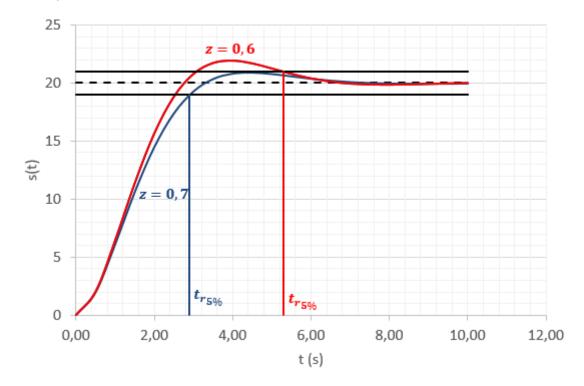


Cette courbe illustre le fait que pour un second ordre, si z est fixé, on a :

$$tr_{5\%}\omega_0 = k(z)$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Le comportement en escaliers pour la partie où z < 0.7 s'explique bien en regardant les oscillations de la réponse :



Lorsque z=0.7, on a le système LE PLUS RAPIDE. On voit bien que si on diminue encore un tout petit peu z, la réponse va dépasser la plage $\pm 5\% s_{\infty}$ et le temps de réponse va augmenter jusqu'à ce que la réponse reste dans cette plage. On illustre ce fait avec le cas z=0.6 ci-dessus.

Il est recommandé de savoir qu'au temps de réponse le plus faible (z=0.7), avec présence d'un dépassement, on a :

$$tr_{5\%}\omega_0 = 3$$

De même, il faut savoir qu'au temps de réponse le plus faible sans dépassement (z=1), on a :

$$tr_{5\%}\omega_0 = 5$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

A.IV.3.b.iii Réponse à une rampe

Considérons une rampe en entrée du système :

$$e(t) = btu(t)$$

$$E(p) = \frac{b}{p^2}$$

Pour déterminer la forme des réponses temporelles à un échelon, nous devons décomposer les réponses en fonction du cas concerné parmi les 3 cas mis en évidence précédemment.

Cas n°1 z > 1	Cas n°2 $z = 1$	Cas n°3 $z < 1$
$S(p) = \frac{K}{(1 + T_1 p)(1 + T_2 p)} \frac{b}{p^2}$ $S(p) = \frac{Kb}{p^2 (1 + T_1 p)(1 + T_2 p)}$	$S(p) = \frac{K}{(1+Tp)^2} \frac{b}{p^2}$ $S(p) = \frac{Kb}{p^2(1+Tp)^2}$	$S(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2} \frac{b}{p^2}$ $S(p) = \frac{Kb\omega_0^2}{p^2[(p+a)^2 + \omega_n^2]}$

• $Cas n^{\circ}1 : z > 1$

$$S(p) = \frac{Kb}{p^{2}(1+T_{1}p)(1+T_{2}p)}$$

$$S(p) = \frac{A}{p} + \frac{B}{p^{2}} + \frac{C}{1+T_{1}p} + \frac{D}{1+T_{2}p}$$

$$S(p) = \frac{Ap+B}{p^{2}} + \frac{C+CT_{2}p+D+DT_{1}p}{(1+T_{1}p)(1+T_{2}p)}$$

$$S(p) = \frac{Ap+B+AT_{1}p^{2}+T_{1}Bp}{p^{2}(1+T_{1}p)} + \frac{C+CT_{2}p+D+DT_{1}p}{(1+T_{1}p)(1+T_{2}p)}$$

$$S(p) = \frac{Ap+B+AT_{1}p^{2}+T_{1}Bp}{p^{2}(1+T_{1}p)} + \frac{C+CT_{2}p+D+DT_{1}p}{(1+T_{1}p)(1+T_{2}p)}$$

$$S(p) = \frac{Ap+B+AT_{1}p^{2}+T_{1}Bp+AT_{2}p^{2}+BT_{2}p+AT_{1}T_{2}p^{3}+T_{1}BT_{2}p^{2}+Cp^{2}+CT_{2}p^{3}+Dp^{2}+DT_{1}p^{3}}{p^{2}(1+T_{1}p)(1+T_{2}p)}$$

$$S(p) = \frac{(AT_{1}T_{2}+CT_{2}+DT_{1})p^{3}+(AT_{1}+AT_{2}+BT_{1}T_{2}+C+D)p^{2}+(A+BT_{1}+BT_{2})p+B}{p^{2}(1+T_{1}p)(1+T_{2}p)}$$

$$\begin{cases} AT_{1}T_{2}+CT_{2}+DT_{1}=0\\ AT_{1}+AT_{2}+BT_{1}T_{2}+C+D=0\\ A+BT_{1}+BT_{2}=0\\ B+Kb \end{cases}$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

$$\begin{cases} C = -D\frac{T_1}{T_2} - AT_1 \\ AT_1 + AT_2 + BT_1T_2 - D\frac{T_1}{T_2} - AT_1 + D = 0 \\ A = -Kb(T_1 + T_2) \\ B = Kb \end{cases}$$

$$D\frac{T_2 - T_1}{T_2} = -T_2(A + BT_1)$$

$$D = -\frac{T_2^2}{T_2 - T_1}(A + BT_1) = -\frac{T_2^2}{T_2 - T_1}Kb(-T_1 - T_2 + T_1) = Kb\frac{T_2^3}{T_2 - T_1}$$

$$C = -\frac{T_2^3}{T_2 - T_1}Kb\frac{T_1}{T_2} \pm Kb(T_1 + T_2)T_1 = Kb\left(-\frac{T_2^2T_1 - (T_1 + T_2)(T_2 - T_1)T_1}{T_2 - T_1}\right)$$

$$C = Kb\left(-\frac{T_2^2T_1 - (T_2^2T_1 - T_1^3)}{T_2 - T_1}\right) = -Kb\frac{T_1^3}{T_2 - T_1}$$

$$\begin{cases} C = -Kb\frac{T_1^3}{T_2 - T_1} \\ D = Kb\frac{T_2^3}{T_2 - T_1} \\ A = -Kb(T_1 + T_2) \\ B = Kb \end{cases}$$

$$S(p) = Kb \left[-\frac{T_1 + T_2}{p} + \frac{1}{p^2} - \frac{1}{T_2 - T_1} \left(T_1^2 \frac{1}{p + \frac{1}{T_1}} - T_2^2 \frac{1}{p + \frac{1}{T_2}} \right) \right]$$

$$S(t) = Kb \left[t - T_1 - T_2 - \frac{1}{T_2 - T_1} \left(T_1^2 e^{-\frac{t}{T_1}} - T_2^2 e^{-\frac{t}{T_2}} \right) \right] u(t)$$

$$\mathbf{z} > \mathbf{1}$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

• Cas $n^{\circ}2: z = 1$

$$S(p) = \frac{Kb}{p^{2}(1+Tp)^{2}}$$

$$S(p) = \frac{A}{p} + \frac{B}{p^{2}} + \frac{C}{1+Tp} + \frac{D}{(1+Tp)^{2}}$$

$$S(p) = \frac{Ap+B}{p^{2}} + \frac{C+CTp+D}{(1+Tp)^{2}}$$

$$S(p) = \frac{(Ap+B)(1+2Tp+T^{2}p^{2}) + (C+D)p^{2} + CTp^{3}}{p^{2}(1+Tp)^{2}}$$

$$S(p) = \frac{(Ap+B+2ATp^{2} + 2TBp + AT^{2}p^{3} + BT^{2}p^{2}) + (C+D)p^{2} + CTp^{3}}{p^{2}(1+Tp)^{2}}$$

$$S(p) = \frac{T(C+AT)p^{3} + (2AT+BT^{2} + C+D)p^{2} + (A+2TB)p + B}{p^{2}(1+Tp)^{2}}$$

$$\begin{cases}
T(C+AT) = 0 \\
2AT+BT^{2} + C+D = 0 \\
A+2TB = 0 \\
B+Kb
\end{cases}$$

$$\begin{cases}
C = -AT \\
A = -2TKb \\
B = Kb
\end{cases}$$

$$D = -2AT - BT^{2} + AT = 4KbT^{2} - KbT^{2} - 2KbT^{2} = KbT^{2}$$

$$\begin{cases}
C = 2KbT^{2} \\
A = -2TKb \\
B = Kb
\end{cases}$$

$$S(p) = Kb \left[-\frac{2T}{p} + \frac{1}{p^{2}} + \frac{2T^{2}}{1+Tp} + \frac{T^{2}}{(1+Tp)^{2}} \right]$$

$$S(p) = Kb \left[-\frac{2T}{p} + \frac{1}{p^{2}} + \left(2T - \frac{1}{p+\frac{1}{T}} + \frac{1}{(p+\frac{1}{T})^{2}} \right) \right]$$

$$S(t) = Kb \left[-\frac{2T}{p} + \frac{1}{p^{2}} + \left(2Te^{-\frac{t}{T}} + te^{-\frac{t}{T}} \right) \right] u(t)$$

$$S(t) = Kb \left[t - 2T + (t+2T)e^{-\frac{t}{T}} \right] u(t)$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

• Cas $n^{\circ}3:z<1$

$$S(p) = \frac{Kb\omega_0^2}{p^2[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{A}{p} + \frac{B}{p^2} + \frac{Cp + D}{(p+a)^2 + \omega_n^2}$$

$$S(p) = \frac{Ap + B}{p^2} + \frac{Cp^3 + Dp^2}{p^2[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{(Ap + B)[p^2 + 2ap + (a^2 + \omega_n^2)] + Cp^3 + Dp^2}{p^2[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{[Ap^3 + 2Aap^2 + A(a^2 + \omega_n^2)p + Bp^2 + 2Bap + B(a^2 + \omega_n^2)] + Cp^3 + Dp^2}{p^2[(p+a)^2 + \omega_n^2]}$$

$$S(p) = \frac{(A + C)p^3 + (2Aa + B + D)p^2 + [A(a^2 + \omega_n^2) + 2Ba]p + B(a^2 + \omega_n^2)}{p^2[(p+a)^2 + \omega_n^2]}$$

$$\begin{cases} A + C = 0 \\ 2Aa + B + D = 0 \\ A(a^2 + \omega_n^2) + 2Ba = 0 \\ B(a^2 + \omega_n^2) = Kb\omega_0^2 \end{cases}$$

$$B = \frac{Kb\omega_0^2}{a^2 + \omega_n^2}$$

On a vu précédemment que :

$$\frac{{\omega_0}^2}{a^2 + {\omega_n}^2} = \frac{{\omega_0}^2}{z^2 {\omega_0}^2 + {\omega_0}^2 (1 - z^2)} = 1$$

De même, on a

$$\frac{a}{a^{2} + \omega_{n}^{2}} = \frac{z\omega_{0}}{z^{2}\omega_{0}^{2} + \omega_{0}^{2}(1 - z^{2})} = \frac{z}{\omega_{0}} = \frac{a}{\omega_{0}^{2}}$$

$$\begin{cases}
C = -A = Kb\frac{2z}{\omega_{0}} \\
D = -2Aa - B = 2Kb\frac{2z}{\omega_{0}}a - Kb = Kb\left[\frac{4z}{\omega_{0}}a - 1\right] = Kb[4z^{2} - 1] \\
A = -\frac{2Ba}{a^{2} + \omega_{n}^{2}} = -\frac{2Kba}{a^{2} + \omega_{n}^{2}} = -Kb\frac{2z}{\omega_{0}} \\
B = Kb
\end{cases}$$

$$\begin{cases}
C = Kb\frac{2z}{\omega_{0}} \\
D = Kb[4z^{2} - 1] \\
A = -Kb\frac{2z}{\omega_{0}} \\
B = Kb
\end{cases}$$

Page **89** sur **111**

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

$$S(p) = -Kb \frac{2z}{\omega_0} \frac{1}{p} + \frac{Kb}{p^2} + \frac{Kb \frac{2z}{\omega_0} p + Kb[4z^2 - 1]}{(p+a)^2 + \omega_n^2}$$
$$S(p) = Kb \left[-\frac{2z}{\omega_0} \frac{1}{p} + \frac{1}{p^2} + \frac{\frac{2z}{\omega_0} p + [4z^2 - 1]}{(p+a)^2 + \omega_n^2} \right]$$

$$\frac{\frac{2z}{\omega_0}p + [4z^2 - 1]}{(p+a)^2 + \omega_n^2} = \frac{\frac{2a}{\omega_0^2}p + 4\frac{a^2}{\omega_0^2} - 1}{(p+a)^2 + \omega_n^2}$$

$$= \frac{2a}{\omega_0^2} \frac{p + 2a}{(p+a)^2 + \omega_n^2} - \frac{1}{(p+a)^2 + \omega_n^2}$$

$$= \frac{2a}{\omega_0^2} \frac{p + a}{(p+a)^2 + \omega_n^2} + \frac{2a}{\omega_0^2} \frac{a}{(p+a)^2 + \omega_n^2} - \frac{1}{(p+a)^2 + \omega_n^2}$$

$$= \frac{2a}{\omega_0^2} \frac{p + a}{(p+a)^2 + \omega_n^2} - \frac{\frac{2a^2}{\omega_0^2} - 1}{(p+a)^2 + \omega_n^2}$$

$$= \frac{2a}{\omega_0^2} \frac{p + a}{(p+a)^2 + \omega_n^2} + \frac{2z^2 - 1}{(p+a)^2 + \omega_n^2}$$

$$= \frac{2z}{\omega_0} \frac{p + a}{(p+a)^2 + \omega_n^2} + \frac{2z^2 - 1}{\omega_n} \frac{\omega_n}{(p+a)^2 + \omega_n^2}$$

$$s(t) = Kb \left[t - \frac{2z}{\omega_0} + \frac{2z}{\omega_0} e^{-at} \cos(\omega_n t) + \frac{2z^2 - 1}{\omega_n} e^{-at} \sin(\omega_n t) \right] u(t)$$

$$s(t) = Kb \left[t - \frac{2z}{\omega_0} + e^{-at} \left(\frac{2z}{\omega_0} \cos(\omega_n t) + \frac{2z^2 - 1}{\omega_n} \sin(\omega_n t) \right) \right] u(t)$$

Posons:

$$N = \sqrt{\left(\frac{2z}{\omega_0}\right)^2 + \left(\frac{2z^2 - 1}{\omega_n}\right)^2} = \sqrt{\frac{4z^2(1 - z^2)}{\omega_n^2} + \frac{4z^4 - 4z^2 + 1}{\omega_n^2}}$$

$$N = \sqrt{\frac{4z^2 - 4z^4 + 4z^4 - 4z^2 + 1}{\omega_n^2}} = \frac{1}{\omega_n}$$

$$\frac{2z}{\omega_0}\cos(\omega_n t) + \frac{2z^2 - 1}{\omega_n}\sin(\omega_n t) = N\left[\frac{2z}{\omega_0}\cos(\omega_n t) + \frac{2z^2 - 1}{N}\sin(\omega_n t)\right]$$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

$$=\frac{1}{\omega_n}\Big[2z\sqrt{1-z^2}\cos(\omega_n t)+(2z^2-1)\sin(\omega_n t)\Big]$$

Soit ϕ tel que

$$\sin \phi = 2z\sqrt{1 - z^2} \in [0; 1] \qquad \cos \phi = 2z^2 - 1 \in [0; 1] \qquad \tan \phi = \frac{2z\sqrt{1 - z^2}}{2z^2 - 1}$$

$$\phi = \tan^{-1} \frac{2z\sqrt{1 - z^2}}{2z^2 - 1}$$

$$\frac{2z}{\omega_0}\cos(\omega_n t) + \frac{2z^2 - 1}{\omega_n}\sin(\omega_n t) = \frac{1}{\omega_n}[\sin\phi\cos(\omega_n t) + \cos\phi\sin(\omega_n t)]$$
$$= \frac{1}{\omega_n}\sin(\omega_n t + \phi)$$

Finalement, on a donc:

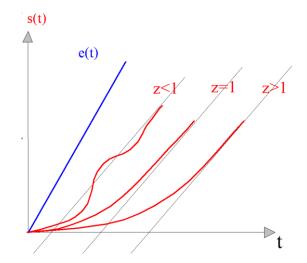
$$s(t) = Kb \left[t - \frac{2z}{\omega_0} + \frac{1}{\omega_n} e^{-z\omega_0 t} \sin(\omega_n t + \phi) \right] u(t)$$

$$\omega_n = \omega_0 \sqrt{1 - z^2}$$

$$\phi = \tan^{-1} \frac{2z\sqrt{1 - z^2}}{2z^2 - 1}$$

$$z < 1$$

• Bilan



Résumé des réponses à une rampe d'un 2° ordre		
z > 1	$s(t) = Kb \left[t - T_1 - T_2 - \frac{1}{T_2 - T_1} \left(T_1^2 e^{-\frac{t}{T_1}} - T_2^2 e^{-\frac{t}{T_2}} \right) \right]$	

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY	
04/10/2017	diff. du 1° et 2° ordre	Cours	

z = 1	$s(t) = Kb\left[t - 2T + (t + 2T)e^{-\frac{t}{T}}\right]$
z < 1	$s(t) = Kb \left[t - \frac{2z}{\omega_0} + \frac{1}{\omega_n} e^{-z\omega_0 t} \sin(\omega_n t + \phi) \right] u(t)$ $\omega_n = \omega_0 \sqrt{1 - z^2}$ $\phi = \tan^{-1} \frac{2z\sqrt{1 - z^2}}{2z^2 - 1} \phi = \tan^{-1} \frac{2z\sqrt{1 - z^2}}{2z^2 - 1}$

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
04/10/2017	diff. du 1° et 2° ordre	Cours

Asymptote à l'infini		
z > 1	z = 1	z < 1
$s(t) \underset{+\infty}{\sim} Kb(t - T_1 - T_2)$	$s(t) \underset{+\infty}{\sim} Kb(t-2T)$	$s(t) \underset{+\infty}{\sim} Kb\left(t - \frac{2z}{\omega_0}\right)$

Erreur de poursuite $arepsilon_v = \lim_{t o +\infty} [e(t) - s(t)]$		
z > 1	$\lim_{\substack{t \to +\infty \\ t \to +\infty}} [bt - Kb(t - T_1 - T_2)]$ $\lim_{\substack{t \to +\infty \\ t \to +\infty}} [bt(1 - K) + Kb(T_1 + T_2)]$	$\varepsilon_v = \begin{cases} b(T_1 + T_2) \ si \ K = 1 \\ \infty \ si \ K \neq 1 \end{cases}$
z = 1	$\lim_{t \to +\infty} [bt - Kb(t - 2T)]$ $\lim_{t \to +\infty} [bt(1 - K) + 2KbT]$	$\varepsilon_v = \begin{cases} 2bT \ si \ K = 1 \\ \infty \ si \ K \neq 1 \end{cases}$
z < 1	$\lim_{t \to +\infty} \left[bt - Kb \left(t - \frac{2z}{\omega_0} \right) \right]$ $\lim_{t \to +\infty} \left[bt(1 - K) + Kb \frac{2z}{\omega_0} \right]$	$\varepsilon_{v} = \begin{cases} b \frac{2z}{\omega_{0}} & \text{si } K = 1\\ \infty & \text{si } K \neq 1 \end{cases}$

Bilan de l'erreur de poursuite : $K = 1 \Rightarrow erreur de poursuite constante$, sinon elle est infinie

A.IV.3.b.iv Bilan des performances d'un système du 2° ordre

Rapidité	Stabilité	Précision
$tr_{5\%}\omega_0=k(z)$ A lire sur courbe fournie A savoir : $k(0,7)=3$ $k(1)=5$	Oscillations si $z < 1$ $\omega_n = \omega_0 \sqrt{1-z^2}$ Système stable	Echelon Dépassement si $z < 1$ $D_{1\%} = e^{-\frac{\pi z}{\sqrt{1-z^2}}}$ $s_{\infty} = Ke_0$ $\varepsilon_s = e_0(1-K)$ Rampe $composit K \neq 1$ $(b(T_1 + T_2) si z > 1)$ $2bT si z = 1$ $b\frac{2z}{\omega_0} si z < 1$
Autre		
$s'(0^+) = 0 \text{ si } e(t) = \begin{cases} e_0 u(t) \\ bt u(t) \end{cases}$		

Remarque:

- Il est souvent plus parlant de donner un écart statique en % de la valeur de consigne afin d'évaluer la précision du système :

$$\varepsilon_s = e_0(1 - K) = \frac{e_0(1 - K)}{e_0}\% = (1 - K)\%$$

- Rappelons que parler d'écart n'a de sens que si l'on compare deux grandeurs de même unité