

TD CH5 – CINÉTIQUE CHIMIQUE

D.Malka – MPSI 2016-2017 – Lycée Saint-Exupéry

CH1-Substitution nucléophile

On étudie la réaction suivante :

$$RBr + HO^{-} \longrightarrow ROH + Br^{-}$$

On suppose que cette réaction admet un ordre : $v = k[RBr]^{\alpha}[HO^{-}]^{\beta}$.

On se propose de déterminer, dans les conditions de l'expérience, les valeurs de α , β et k.

- 1. Définir le temps de demi-réaction $t_{1/2}$.
- 2. Soit la réaction A = B admettant un ordre apparent α . Exprimer $t_{1/2}$ en fonction de la constante apparente k et $[A]_0$ pour $\alpha = 0$, 1 et 2.
- 3. Une expérience a pour conditions initiales : $[RBr]_0 = 0,010\,mol.L^{-1}$ et $[HO^-]_0 = 1,0\,molL^{-1}$.

On mesure la concentration de RBr à l'instant t:

t (min)	0	10	20	30	40
1000[RBr](mol/L)	10,0	5,0	2,5	1,2	0,6

Cette réaction admet-elle un ordre? Si oui lequel et par rapport à quel réactif? Que vaut la constante apparente de vitesse?

On recommence la même expérience avec des concentrations initiales différentes : $[RBr]_0 = 0,010 \, mol.L^{-1}$ et $[HO^-]_0 = 0,50 \, mol.L^{-1}$.

On mesure la concentration de RBr à l'instant t:

t (min)	0	10	20	30	40
1000[RBr](mol/L)	10,0	7,1	5,0	3,5	2,5

- 4. Déterminer la valeur de $t_{1/2}$ et en déduire éventuellement une constante apparente de vitesse.
- 5. En déduire l'ordre partiel par rapport à $[HO^-]$ et la loi de vitesse de la réaction.

CH2-Suivi pH-métrique de la cinétique d'une réaction

On étudie la réaction suivante :

$$Mo_7O_{24}^{6-} + 8HO^- \longrightarrow 7MoO_4^{2-} + 4H_2O$$

en mettant un large excès de l'ion polymolybdate $Mo_7O_{24}^{6-}$. On mesure le pH au cours du temps.

t (ms)	0	5	11	18	25
pH	11.7	11.5	11.3	11.05	10.8

- 1. Donner le lien entre la concentration en ions hydroxyde et le pH.
- 2. A partir du graphe fig.1, déterminer l'ordre de la réaction puis la valeur de la constante de vitesse apparente.

CH3-Saponification

On étudie la saponification d'un ester : $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{2}\right$

$$RCOOR' + HO^{-} \xrightarrow{k} RCOO^{-} + R'OH$$

Dans un litre d'eau thermostatée à $27\,^{\circ}C$, on introduit sans variation de volume $10^{-2}\,mol$ d'hydroxyde de sodium et $10^{-2}\,mol$ d'ester.

Au bout de 2h, on constate qu'il ne reste que 25% des ions HO^- .

- 1. Etablir la loi x = [R'OH] = f(t) dans l'hypothèse d'une réaction d'ordre deux (à ordres partiels entier).
- 2. Déduire la constante k et le temps de demi-réaction $t_{1/2}$.

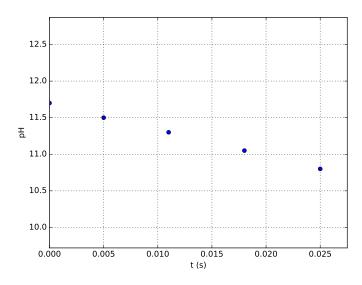


Figure 1 – Points expérimentaux

CH4-Méthode des vitesses initiales

Le DMSO (diméthyl
sulfoxyde) subit une réaction de décomposition thermique à haute température (613
 K). L'équation-bilan est écrite de façon simplifiée sous la forme :

DMSO =produits de décomposition

Cette réaction est étudiée par la méthode des vitesses initiales : dans le tableau ci-après, la vitesse initiale v_0 de la réaction est donnée pour différentes valeurs de la concentration initiale en DMSO. On suppose que la loi de vitesse s'écrit sous la forme $v_0 = k[DMSO]_0^{\alpha}$. On cherche à déterminer l'ordre initial de la réaction α .

$10^3 [DMSO]/mol.L^{-1}$	2,0	4,0	6,0	8,0	10
$10^6 v_0/mol.L^{-1}.s^{-1}$	1,52	3,12	4,73	6,33	7,93

1. Rappeler par quelle méthode graphique on peut déterminer la vitesse initiale v_0 .

- 2. Par quelle méthode graphique peut-on déterminer l'ordre de la réaction sans avoir d'hypothèse à formuler sur la valeur de α ?
- 3. Mettre en oeuvre cette méthode à l'aide du fichier de mesure CH5_CH4.txt et du programme python CH5_CH4.py.

CH5-Mesure de l'énergie d'activation

La réaction $2N_2O_5 \to 4NO_2 + O_2$ est d'ordre 1. On mesure la constante de vitesse k pour différentes températures :

$\theta(^{\circ}C)$	25	35	55	65
$10^5 k(s^{-1})$	1,72	6,65	75	240

- 1. Rappeler la loi d'Arrhénius.
- 2. A partir d'une régression linéaire des données expérimentales, déterminer l'énergie d'activation E_a de la réaction. On pourra s'appuyer sur les fichiers CH5_CH5.txt et CH5_CH5.py.
- 3. En déduire la constante de vitesse pour $\theta = 30^{\circ}C$.