TD cinématique du solide : Torseur cinématique

Exercice 1: Equilibreuse

L'équilibrage des roues d'une voiture est très important. Une voiture dont les roues ne sont pas équilibrées vibre, entraînant dégradation du confort (bruit, vibration...) et détérioration de la mécanique (les pneus s'usent plus vite, les boulons se dévissent..).

Le schéma représente une équilibreuse de roue de véhicule.

Ce système est composé de 3 solides, (S), (S1) et (S2), (S2) étant la roue à équilibrer.

Description des mouvements :

- ✓ Le solide (S1) a un mouvement de rotation d'axe (O, \vec{z}) et d'angle α par rapport au solide (S).
- ✓ Le solide (S2) a un mouvement de rotation d'axe (O, \vec{x}_1) et d'angle β par rapport au solide (S1).

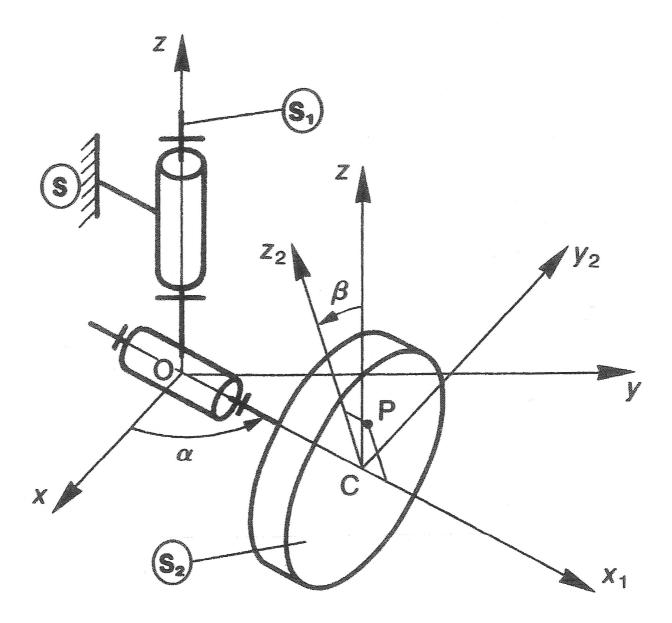
Paramétrage:

Au solide (S), (S1) et (S2) sont liés respectivement les repères $R(O, \vec{x}, \vec{y}, \vec{z})$,

$$R_1(O, \vec{x}_1, \vec{y}_1, \vec{z}_1)$$
 et $R_2(O, \vec{x}_2, \vec{y}_2, \vec{z}_2)$. On a $\vec{z}_1 = \vec{z}$ et $\vec{x}_2 = \vec{x}_1$.

Pour procéder à l'équilibrage, on entraîne la roue (S2) en rotation par rapport à (S1).

Lorsque la roue n'est pas équilibrée, les effets dynamiques font varier l'angle α entre deux bornes qui peuvent être mesurées.

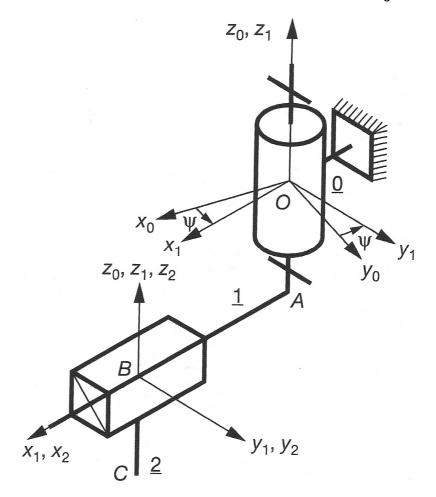

Afin de supprimer cette variation, des masselottes appropriées sont placées sur la périphérie de la jante.

Une masselotte d'équilibrage est assimilée à un point P, dont la position est définie par :

$$\vec{CP} = a.\vec{x}_1 + c.\vec{z}_2$$
 (a et c sont des constantes positives).

La roue (S2) de centre C est positionné sur l'axe (O, \vec{x}_1) tel que : $O\vec{C} = r.\vec{x}_1$ (r est une constante positive).

Pour simplifier les écritures, on pose b = a + r.



Questions

- 1. Dessiner les figures de changement de base.
- **2.** Déterminer au point P le torseur cinématique du solide (2) dans son mouvement par rapport à R. Préciser les vitesses d'entrainement et relative.
- **3.** Déterminer l'accélération du point P, appartenant au solide (2) dans son mouvement par rapport à R : $\vec{A}(P \in 2/R)$. Préciser les accélérations d'entrainement, relative et de Coriolis.

Exercice 2.

Bras de robot

Soit $R_0(O,\vec{x}_0,\vec{y}_0,\vec{z}_0)$ un repère lié au support (0) d'un bras de robot.

Le solide (1) a un mouvement de rotation d'axe (O, \vec{z}_0) et d'angle ψ par rapport à (0).

$$R_1(O, \vec{x}_1, \vec{y}_1, \vec{z}_1)$$
 est un repère lié au solide (1). $\vec{z}_1 = \vec{z}_0$.

Le solide (2) a un mouvement de translation de direction \vec{x}_1 par rapport à (1).

$$R_{_{2}}(B,\vec{x}_{_{2}},\vec{y}_{_{2}},\vec{z}_{_{2}})$$
 est un repère lié au solide (2). $\vec{x}_{_{1}}=\vec{x}_{_{2}},\ \vec{y}_{_{1}}=\vec{y}_{_{2}},\ \vec{z}_{_{1}}=\vec{z}_{_{2}}.$

$$\overrightarrow{OA} = -a.\vec{z}_0$$
 $\overrightarrow{AB} = x.\vec{x}_1$ $\overrightarrow{BC} = -b.\vec{z}_0$ (x variable, a et b constantes)

Questions.

- 1. Dessiner la figure de changement de base.
- 2. Donner la position du point C dans la base (B0).
- 3. Donner la condition pour que le point C se déplace sur une droite de direction (O, \vec{y}_0) passant par le point D avec $\overrightarrow{OD} = c.\vec{x}_0 (a+b).\vec{z}_0$.
- **4.** Déterminer au point C le torseur cinématique du solide (2) dans son mouvement par rapport au repère (R0). Préciser les vitesses d'entraînement et relative de C.
- **5.** Déterminer l'accélération $\vec{A}(C \in 2/R_{_0})$, préciser les accélérations d'entraînement, relative et de Coriolis.