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CONVERTISSEUR POUR TABLE À INDUCTION 

Le chauffage domestique par induction consiste à placer un récipient constitué d’un métal 
spécialement adapté et massif au-dessus d’un bobinage inducteur alimenté en courant 
alternatif. Pour favoriser l’apparition de courants de Foucault importants dans le métal qui 
chaufferont le récipient par effet Joule, il convient que cette alimentation se fasse à haute 
fréquence (par rapport à celle du réseau électrique à 50 Hz). On doit donc employer une 
chaîne de conversion comprenant tout d’abord un convertisseur alternatif-continu (non étudié 
dans ce problème) qui fournit la source de tension considérée idéale désignée par E dans le 
problème, suivi d’un convertisseur continu-alternatif qui fait l’objet de cette étude. On 
abordera successivement la structure de base du convertisseur, la commande décalée, le 
fonctionnement à la résonance et finalement l’impact thermique des pertes dans les 
interrupteurs. Ces différentes parties sont largement indépendantes. 

 

I) STRUCTURE ET COMMANDE PLEINE ONDE 

I).1. On étudie un convertisseur à quatre interrupteurs K1, K’1, K2 et K’2, représenté ci-
dessous. Les interrupteurs sont considérés idéaux et commandables à l’ouverture et à la 
fermeture, la source est une source idéale de tension continue de valeur E. La charge est un 
circuit comportant en série une résistance R, une inductance L et une capacité C. 

 

E
R L C

K1

K'1

K2

K'2

i'(t)

u(t)

i(t)

i
1
(t)

u
1
(t)

2



 

  
 

I).1.1. La nature de la charge est-elle une source de courant ou de tension ? Justifier votre 
réponse. Déduire, de la nature de la source ainsi que de la charge, les conditions à respecter 
pour la commande des interrupteurs. 

I).1.2. On commande les interrupteurs de manière périodique à la fréquence f = 1/T selon la 
séquence suivante (1 : interrupteur fermé, 0 : interrupteur ouvert) et on suppose que le courant 
dans la charge est purement sinusoïdal d’expression : 

𝑖 𝑡 = 𝐼!sin  (𝜔𝑡 + 𝜑) avec ω = 2πf  et -π/2 < ϕ < 0 pour l'instant. 

 

 

Tracer sur le document-réponse l’allure temporelle des tensions u(t) aux bornes de la charge, 
u1(t) aux bornes de l’interrupteur K1 , du courant i(t) dans la charge et du courant i’(t) dans la 
source d’alimentation. 

I).1.3. Calculer la valeur efficace U de u(t). La définition de la valeur efficace d’un signal 

périodique de période T étant : 𝑋!"" =
!
!

𝑥(𝑡)!𝑑𝑡!
!    . 

I).1.4. On donne la décomposition en série de Fourier d’un signal rectangulaire de valeur 
moyenne nulle, d’amplitude E et de période T telle que ωT = 2π et de rapport cyclique 1/2 :

 𝑒 𝑡 = !!
!

!"#  ( !!!! !")
!!!!

!!
!!!  

 

En déduire la valeur efficace U1 du fondamental de u(t). 
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I).1.5. On définit le taux de distorsion harmonique d’un signal périodique x(t) (en 

pourcentage) comme : τH(x) = 100 
!!!!!!

!!
 

X étant la valeur efficace de x(t) et X1 la valeur efficace du fondamental de x(t). 

I).1.5.a. Calculer τH(u) . Donner sa valeur numérique approchée en prenant π2 = 10 

I).1.5.b. Que vaut le taux de distorsion du courant τH(i) ? À quoi est due la différence entre 
τH(i) et τH(u) ? 

I).1.6. Calculer la valeur moyenne I’ de i’(t) le courant délivré par la source d’alimentation. 

I).1.7. Calculer la puissance moyenne P absorbée par la charge (R, L, C). 

I).1.8. Calculer la puissance moyenne P’ fournie par la source d’alimentation. Commenter. 

I).1.9. Les interrupteurs Ki (ou K’i) sont tous constitués de l’association en anti-parallèle 
d’un interrupteur commandé Ti unidirectionnel en courant et d’une diode Di (courant dans le 
sens de la flèche des interrupteurs). En considérant toujours -π/2 < ϕ < 0, représenter dans le 
tableau du document-réponse les intervalles temporels et angulaires où les différents 
interrupteurs Ti et Di conduisent, sur une période de fonctionnement du convertisseur (la 
relation entre le temps t et l’angle θ étant θ = ωt). 

 

II) COMMANDE DÉCALÉE 

Afin de modifier les formes d’onde de la tension u(t) et d’en diminuer le taux de distorsion 
harmonique, on adopte une commande des interrupteurs légèrement différente appelée 
commande décalée décrite ci-dessous : 

La commande des interrupteurs du premier bras (K1, K’1) est inchangée tandis que celle des 
interrupteurs du second bras (K2, K’2) est retardée d’un angle β compris entre 0 et π. 
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II).1. Donner la représentation graphique de u(θ) et de u1(θ) en correspondance. Quel est le 
trajet du courant dans les intervalles [0, β] et [π, π+β] ? 

II).2. Sans en calculer la valeur, représenter le fondamental de u(t), en particulier sa position 
angulaire par rapport à u(t). 

Si la charge (R, L, C) est inchangée, ainsi que la fréquence de commande, en déduire 
l’expression instantanée du courant i(t) qu’on considérera toujours sinusoïdal (d’amplitude Im 
même si bien sûr son amplitude ne garde pas la même valeur que dans la partie I). On 
justifiera soigneusement le résultat. 

Représenter graphiquement i(θ). 

II).3. Déduire de la question précédente la représentation graphique de i’(θ) le courant fourni 
par la source. 

II).4. Quel est l’avantage de la commande décalée par rapport à la commande pleine onde ? 
Présente-t-elle des inconvénients ? 

II).5. Calculer la valeur efficace U’ de la tension u(t) pour la commande décalée en fonction 
de β et E. 

II).6. On donne la valeur du fondamental de u(t) pour la commande décalée : 

𝑈!! =
2 2
𝜋 cos

𝛽
2 𝐸 

En déduire la valeur du taux de distorsion harmonique pour la commande décalée en fonction 
de β :  τH(u) = f(β) 

II).7. On voudrait trouver la valeur de β qui minimise le taux de distorsion de u(t). En 
s’intéressant à 𝑔 𝛽 = (!(!)

!""
)! déterminer la condition que doit satisfaire β pour minimiser le 

taux de distorsion. 

Application numérique : à l’aide du tableau suivant qui donne les valeurs des fonctions : 
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ℎ 𝛽 = 𝜋 − 𝛽 tan  (!
!
) 𝑘 𝛽 = ! !

!
cos !

!
  𝑐 𝛽 = (𝑘 𝛽 )! 

déterminer approximativement la valeur de β qui minimise le taux de distorsion ainsi que sa 
valeur τHmin. 

β(°) 0 7,5 15 22,5 30 37,5 45 52,5 60 67,5 75 82,5 90 
h(β) 0 0,20 0,38 0,55 0,70 0,84 0,97 1,1 1,2 1,3 1,4 1,5 1,6 
k(β) 0,90 0,90 0,89 0,88 0,87 0,85 0,83 0,81 0,78 0,75 0,71 0,68 0,64 
c(β) 0,81 0,81 0,79 0,77 0,76 0,72 0,69 0,66 0,61 0,56 0,50 0,46 0,41 
 

II).8. Tracer l’allure de τH(u) = f(β) pour β compris entre 0 et 90°.  

III) ÉTUDE DE LA RÉSONANCE 

On revient à la commande pleine onde de la partie I et on veut étudier les conditions dans 
lesquelles on peut effectivement considérer que le courant i(t) est quasi-sinusoïdal. 

III).1. On considère tout d’abord qu’on alimente la charge (R, L, C) par une tension 
sinusoïdale de fréquence f  (telle que ω = 2πf) :  𝑢 𝑡 = 2𝑈sin  (𝜔𝑡) 

Dans ces conditions, déterminer l’expression temporelle du courant i(t) sous la forme : 

𝑖 𝑡 = 2𝐼sin  (𝜔𝑡 + 𝜑)  

et on donnera l’expression de I et ϕ en fonction de ω et des autres données. 

III).2. Tracer la courbe Ieff(ω) (en échelle linéaire) ainsi que ϕ(ω). Pour quelle valeur ω0 la 
courbe Ieff(ω) atteint-elle son maximum et quelle est alors la valeur Imax prise ? (Reporter ces 
indications sur la courbe.) 

III).3. Quel est le facteur de qualité Q du circuit ? En déduire la valeur exacte de la bande 
passante en courant du circuit définie comme Δf = f2 – f1 , avec f1 et f2 (f1 < f2) telles que : 

 I(f1) = I(f2) = Imax/ 2 

III).4. On revient à l’alimentation de la charge par la tension u(t) en commande pleine onde. 
À l’aide de la décomposition en série de Fourier fournie en I)1.4., déterminer l’expression 
temporelle EXACTE du courant i(t) comme somme d’harmoniques de courant sous la forme : 

𝑖 𝑡 = 𝐼!!!!sin  ( 2𝑘 + 1 𝜔𝑡 + 𝜑!!!!)
!!

!!!

 

On donnera donc l’expression de I2k+1 et ϕ2k+1. 

III).5. On donne E = 𝜋 2.150 V , R = 20 Ω , L = !
!!

.10-3 H , C = !,!
!!

.10-6 F . 
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Calculer avec ces valeurs f0 et Q. 

III).6. On décide d’alimenter l’onduleur (le convertisseur) à la fréquence f0. Donner alors les 
expressions des valeurs efficaces I1, I3 et I5 en fonction de E, Q et R. 

Calculer I1. Calculer les rapports I3/I1 et I5/I1 en fonction de Q, puis donner une valeur 
approchée de ces rapports en faisant les approximations qui vous semblent légitimes. 

Que peut-on dire de la valeur relative des harmoniques de rang supérieur à 5. Expliquer le 
phénomène. 

III).7. On considère qu’on peut assimiler le courant i(t) à son fondamental à condition que son 
taux de distorsion soit inférieur à 5%. On peut démontrer par ailleurs que :  𝐼! = 𝐼!!!!

!!!  

En déduire une valeur approchée de τH(i) en négligeant les harmoniques de rang supérieur ou 
égal à 7. Peut-on donc confondre i(t) avec son fondamental ? 

III).8. En ne considérant que le fondamental du courant même si f ≠ f0 , tracer l’allure de i(θ) 
et u(θ) sur le même graphe dans les deux cas suivants : f < f0 et f > f0 . 

III).9. Toujours dans les deux cas précités, tracer l’allure des deux courants iT1(θ) et iD1(θ) 
dans l’interrupteur commandé et dans la diode constituant l’interrupteur K1. 

III).10. Pour des raisons technologiques de commande des interrupteurs, on souhaite éviter 
d’avoir à interrompre le courant dans un interrupteur commandé (extinction forcée), on 
préfère que le courant s’y interrompe naturellement et que la diode associée prenne le relais 
(extinction naturelle). Dans ces conditions, indiquer si il est préférable de travailler avec f < f0 
ou f > f0 . 

IV) ASSERVISSEMENT DE PUISSANCE 

On souhaite asservir le système en puissance et pour cela on donne ci-dessous la courbe 
représentative P(f) qu’on peut obtenir par l’étude menée dans la partie précédente. 
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IV).1. Justifier que la grandeur de commande de la puissance peut être simplement la 
fréquence de fonctionnement, toutes choses restant égales par ailleurs. 

IV).2. On décide d’asservir la puissance à une valeur Préf = 3Pmax/4. Quel est a priori le 
nombre de fréquences de fonctionnement possibles pour obtenir cette valeur ? 

On représente l’asservissement de manière globale par le schéma fonctionnel simplifié 
suivant : 

- L’asservissement a pour entrée Créf et sortie P la puissance moyenne absorbée par la 
charge. 

- La puissance moyenne est mesurée par l’intermédiaire d’un bloc de mesure 
comprenant un capteur de courant, un capteur de tension, un multiplieur et un filtre. 

- Le bloc OCT est un oscillateur contrôlé en tension qui délivre en sortie une tension de 
fréquence proportionnelle à la tension d’entrée. 

- De plus il comporte un comparateur d’entrée, nécessaire à la réalisation d’un système 
en boucle fermée. 
 

 
 

IV).3. Expliquer qualitativement le fonctionnement de l’asservissement. En déduire la 
stabilité des points de fonctionnement obtenus précédemment par rapport à une variation 
intempestive de puissance. Quel point de fonctionnement doit-on choisir ? Pourrait-on 
asservir la puissance à la valeur P = Pmax ? 

IV).4. Pour mesurer la puissance on utilise un capteur de courant de gain ki, un capteur de 
tension de gain kv, un multiplieur tel que s(t) = K0 x(t) y(t), où s(t) est la tension de sortie, x(t) 
et y(t) les deux entrées. On mesure donc grâce à ces capteurs le courant i(t) dans la charge et 
la tension u(t) à ses bornes, puis on envoie ces deux signaux aux deux entrées du multiplieur.  

Valeurs numériques : K0 = 0,1 V-1 , ki = 0,2 V.A-1 , kv = 0,05  

Exprimer le rapport entre la sortie s(t) du multiplieur et p(t) la puissance instantanée absorbée 
par la charge. 

IV).5. Quel est le spectre en fréquence de s(t) (si on considère que i(t) est quasi-sinusoïdal)? 
Le représenter. Si on veut mesurer la puissance moyenne absorbée, quel type de filtrage doit-
on opérer sur s(t) ? Si le filtre envisagé est du deuxième ordre, quelle doit être la fréquence de 
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coupure maximale de ce filtre si on souhaite une atténuation d’un facteur 100 pour la première 
fréquence à éliminer ? 

Faire maintenant le schéma complet du bloc de mesure de la puissance. En prenant un gain 
statique unitaire G0 = 1 pour le filtre agissant sur s(t), calculer le gain global du capteur de 
puissance. 

IV).6. Recopier et compléter finalement le schéma fonctionnel suivant avec le gain approprié 
du capteur de puissance, le gain en puissance de l’onduleur étant pris égal à A0 autour du 
point de fonctionnement choisi. En régime établi, quelle est la valeur que doit théoriquement 
atteindre le signal d’erreur e(t) à la sortie du comparateur ? En déduire la valeur de la tension 
de consigne Créf qu’il est nécessaire d’imposer pour obtenir effectivement le point de 
fonctionnement voulu. 

 

IV).7. Que se passe-t-il si au cours du fonctionnement la valeur de l’un des composants 
réactifs (L ou C) de la charge évolue ? Et si R évolue dans un sens ou dans l’autre ? 

 

V) MODÉLISATION THERMIQUE 

Les composants électroniques sont fabriqués à base de semi-conducteurs dont les 
caractéristiques électriques dépendent fortement de la température, c’est pourquoi il importe 
de ne pas dépasser une certaine température au niveau de la jonction. Cette partie cherche à 
établir la valeur de cette température par un modèle simplifié. 

V).1. Équation de diffusion dans un milieu homogène : on considère un système pour lequel 
la conduction de la chaleur se fait uniquement dans la direction Ox. On néglige dans toute 
la suite la convection et le rayonnement. 

On considère un barreau d’axe Ox constitué d’un matériau homogène de conductivité 
thermique λ, de capacité thermique massique c, de masse volumique ρ, de surface 
transversale S. 

De plus le matériau est le siège d’une production thermique de puissance volumique Pv . 

V).1.a. Rappeler la loi de Fourier de la diffusion thermique liant le vecteur densité de courant 
thermique et le champ de température, d’abord en terme vectoriel puis dans le cas qui nous 
intéresse. 
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V).1.b. Par un bilan thermique local à une dimension sur un élément du barreau situé entre les 
abscisses x et x + dx, établir l’équation de diffusion de la température T(x,t) en fonction de 
ses dérivées spatiales ou temporelles et des caractéristiques du milieu décrites ci-dessus ainsi 
que de Pv. 

V).2. Analogie électrocinétique : on souhaite étudier les variations spatio-temporelles de la 
température à l’aide de circuits analogues aux circuits électriques. Pour cela on considère de 
nouveau une portion de barreau situé entre x et x + dx, recevant en x le flux de puissance P. 
On considérera une température de référence Tréf constante par rapport à laquelle on calculera 
les écarts de température (cette température de référence sera précisée ultérieurement). 

On prendra de plus Pv = 0 . 

Montrer que dans ces conditions on peut établir l’analogie entre l’équation de diffusion de la 
chaleur et le schéma suivant : 

 

 

Déterminer donc dCth et dRth en fonction des caractéristiques du matériau ainsi que de la 
longueur élémentaire dx. 

V).3. On souhaite modéliser une longueur finie par une mise en cascade de cellules 
élémentaires identiques à celle vue ci-dessus. Déterminer les résistances thermiques linéiques 
et les capacités thermiques linéiques figurant dans ces schémas définies par : 

Λ! =
𝑑𝑅!!
𝑑𝑥                     Γ! =

𝑑𝐶!!
𝑑𝑥    
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V).4. En utilisant le schéma de chaîne infinie ci-dessus déterminer les deux équations 
différentielles reliant T(x,t) et P(x,t) à l’aide de Λx et Γx . 

V).5. En combinant ces deux équations, établir l’équation de diffusion de la chaleur déjà vue 
en V).1.b (sans terme de source), confirmant ainsi la validité de ce modèle électrocinétique. 

V).6. Si on souhaite avec une telle modélisation rendre compte du comportement thermique 
d’un dispositif réel qui n’a pas une géométrie aussi simple que celle présentée ici et dont les 
propriétés thermiques peuvent varier spatialement, comment devrait-on procéder en s’aidant 
de moyens de simulation numériques (logiciels de calcul) ? 

V).7. Dans le but de mener une étude approchée du comportement thermique d’un 
interrupteur tels que ceux déjà vus dans le début du problème (voir schéma ci-dessous), on 
décide de simplifier le modèle en considérant que : 

- Toute la puissance dissipée dans l’interrupteur est produite à un endroit précis du 
composant, la jonction (dans un interrupteur il y a contact à la jonction entre deux 
semi-conducteurs enrichis différemment). 

- On groupe en un seul élément la capacité thermique de la jonction Cj, on groupe 
également la résistance thermique entre la jonction et le boîtier dans l’élément Rjb. 

- De même on modélise le boîtier en contact avec l’air ambiant par l’intermédiaire 
d’un dissipateur thermique par la capacité Cb et la résistance Rba. 

 

On aboutit alors au schéma équivalent suivant : 
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On peut alors par analogie avec l’électrocinétique, si le courant de puissance p(t) produit au 
niveau de la jonction est sinusoïdal, calculer une fonction de transfert en régime sinusoïdal 
entre P et Tj les amplitudes complexes de p(t) et Tj(t). 

On obtient alors l’expression de   𝐻 𝑗𝜔 = !!"!!!"!!!!"!!"!!!
!!! !!"!!!!!"!!!!!"!! !!!!"!!"!!!!(!")!

 

Quelle est l’équation différentielle liant p(t) et Tj(t) de manière générale (p(t) de forme 
quelconque) ? 

V).8. On cherche à déterminer la réponse thermique de l’interrupteur à partir d’une mise en 
service à t = 0, avec p(t) = 0  si t < 0 et p(t) = P0 si t > 0, en supposant qu’à l’instant initial tout 
le système est à la même température Ta (température ambiante). 

Quelle est l’équation différentielle à laquelle obéit Tj(t) pour  t > 0 ? 

La résoudre totalement en tenant compte des conditions initiales dans le cas où Rba >> Rjb et  
Cb >> Cj . 

Tracer alors la courbe Tj(t) en précisant les valeurs caractéristiques. Évaluer le temps de 
réponse à 5% du sytème : tr , c’est-à-dire le temps nécessaire pour que la valeur de Tj(t) arrive 
à une valeur éloignée de moins de 5% de sa valeur finale. 

Application numérique : Rjb = 0,05 K.W-1 , Rba = 2,0 K.W-1 , Cj = 0,5 W.s.K-1 ,  

Cb = 20 W.s.K-1  , P0 = 15 W, Ta = 30 °C 

V.9) Quelle est la valeur finale de la température de jonction ? 

Le constructeur précise que la valeur limite supportable est Tj = 100 °C. L’interrupteur sera-t-
il endommagé dans ces conditions ? 

V).10. Si les interrupteurs ne sont pas parcourus par un courant constant, la puissance dissipée 
p(t) n’est pas constante. Quelle est la fréquence du fondamental de p(t) si les interrupteurs 
sont commandés à la fréquence f ? Sachant que f est supérieure à 1 kHz, quelle est la réponse 
thermique du système à ces variations de puissance ? Justifier soigneusement la réponse. 

V).11. AILETTES DE REFROIDISSEMENT 
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Pour éviter un échauffement de l'interrupteur trop important, on peut munir son boîtier 
d'ailettes de refroidissement métalliques homogènes de conductivité thermique λ’, de capacité 
thermique massique c’, de masse volumique ρ’. Chaque ailette est parallélépipédique, de 
dimensions :  épaisseur : a, largeur : b et longueur : L. 

En fonctionnement, le boîtier de l’interrupteur se trouve à la température Tb = 60 °C. L'air 
extérieur, qui circule, est de température constante et uniforme Ta = 20 °C. 

Dans, l'ailette, on admettra que le transfert thermique, de type conductif, peut être considéré 
comme unidimensionnel dans la direction de l'axe Ox, et qu’il obéit à la loi de Fourier, 𝚥(𝑥) 
étant le vecteur densité de flux thermique à l'abscisse x, mesurée à partir de l'origine O au 
contact du boîtier de l'interrupteur, T(x) étant la température à l'abscisse x dans l'ailette. 

Il existe aussi un transfert thermique de l'ailette vers l'air ambiant, à travers ce qu’on appelle 
la couche limite. Le flux thermique surfacique sortant de l'ailette vers l'air ambiant est de la 

forme :  
!"
!"
= ℎ(𝑇 𝑥 − 𝑇!) 

où h = 150 SI est un coefficient uniforme et constant. 

V).11.1. Donner l'unité du coefficient h dans le système international. 

V).11.2. Écrire le bilan des échanges d'énergie pour la tranche d'ailette comprise entre les 
abscisses x et x + dx, en régime permanent stationnaire d'échange thermique. 

V).11.3. En déduire que la température T(x) est solution d’une équation différentielle linéaire 
(dépendant de Ta) dont on exprimera les coefficients en fonction de λ’, h et des 
caractéristiques géométriques de l’ailette. 

V).11.4. Faire apparaître une longueur caractéristique de variation δ qu’on exprimera en 
fonction des mêmes paramètres que précédemment. 

V).11.5. Résoudre cette équation différentielle pour déterminer l'expression de T(x) dans le 
cas où δ << L. On pourra poser θ(x) = T(x) - Ta  . 

V).11.6. Dans le cas précédent (cas de l’ailette de grande longueur), donner l'expression de la 
puissance thermique  dP  sortant de la surface latérale dS de la tranche d'ailette comprise entre 
les abscisses x et x + dx (en gris sur la figure). 

V).11.7. En déduire l'expression de la puissance thermique totale P évacuée par l'ailette. 

V).11.8. Exprimer la puissance thermique P0 transmise du boîtier de l’interrupteur à l'ailette 
en x = 0. Comparer à la question précédente. 

V).11.9. Quelle est alors la résistance thermique équivalente de l’ailette de grande longueur 
notée R∞ définie par :   𝑅! = !!!!!

!
    . Comparer à la résistance thermique R d’un barreau de 

mêmes dimensions sans échange thermique latéral en calculant le rapport R∞/R en fonction de 
δ, L et des autres caractéristiques du barreau. 
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V).12. On envisage maintenant le cas où on n’impose plus L >> δ. 

Quelle est la condition à respecter pour la solution de T(x) en x = 0 ? 

V).13. De même quelle est la condition à respecter en  x = L pour le flux thermique et en 
conséquence pour la fonction T(x) en  x = L ? 

V).14. À partir des conditions aux limites précédentes, déterminer complètement la solution 
T(x) en fonction de Tb , Ta , λ’, h et δ . 

V).15. On veut déterminer la longueur nécessaire pour que l’on ait :  ! ! !!!
!!!!!

< 5% 

Donner l’équation qui peut permettre de calculer L (c’est cette longueur minimale qu’on va 
adopter pour l’ailette car rajouter de la longueur est alors quasi-inutile). 

 

VI) PERTES DANS LES INTERRUPTEURS 

En réalité, un interrupteur tel que ceux utilisés pour l’onduleur (voir schéma du I).1.9. ) ne 
présente pas une tension nulle à l’état passant, ce qui occasionne des pertes thermiques. 
Quand l’interrupteur commandé T1 est conducteur alors uT1 = V0 = 1 V, et quand la diode 
antiparallèle D1 est conductrice alors uD1 = V0 = 1 V. 

VI).1. On considère que l’interrupteur K1 (ou K’2) conduit pendant une demi-période, c’est à 
dire de t = 0 à t = T/2 et que le courant dans la charge vaut :  𝑖 𝑡 = 𝐼!sin  (𝜔𝑡 + 𝜑) 

avec ω = 2πf = 2π/T  et   0 < ϕ  < π/2 

Représenter sur le document-réponse les courants iT1(t) dans l’interrupteur commandé T1 
ainsi que celui dans la diode D1 iD1(t) en correspondance temporelle en fonction de θ = ωt sur 
une période T. 

En déduire la puissance moyenne de conduction dissipée dans T1 sur une période T et la 
puissance moyenne de conduction dissipée dans D1 sur une période T. 

Finalement, exprimer la puissance moyenne de conduction totale dissipée dans l’interrupteur 
Pcond. 

VI).2. On désire tenir compte également des pertes par commutation dans les interrupteurs, 
c’est-à-dire que quand un interrupteur entre en conduction (en t = 0 pour T1 par exemple), le 
courant ne passe pas instantanément de 0 à la valeur du courant de la charge et qu’également 
la tension ne passe pas instantanément à 0 (en fait à V0 << E). Cette phase de commutation 
dure pendant un court instant tc << T. 

On représente donc les formes d’onde ainsi sur un intervalle de temps très court par rapport à 
la période (quelques fois tc) : 
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Tracer p(t) dissipée dans cette phase et calculer la valeur moyenne de la puissance de 
commutation Pcom en fonction de E, I0, tc et f. 

Finalement donner l’expression de la puissance moyenne dissipée P0 = Pcond + Pcom. 

VI).3. Tracer la courbe P0(f), pour f compris entre 10 et 30 kHz. Pour quelle valeur de f les 
pertes par commutation deviennent-elles supérieures à celles par conduction ?  

Application numérique : tc = 2 µs, E = 200 V, Im = 5π A, I0 = 1,2 A. 
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