
Correction de l'épreuve de chimie MP Concours MINES PONTS session 2018

Correction proposée par : EL FILALI SAID CHAOUQI AZIZ

LE BIOÉTHANOL

1 •

▶ La structure de Lewis de la molécule d'éthanol :

- L'existence des liaisons d'hydrogène entre les molécules d'eau et les molécules d'éthanol rendent l'éthanol miscible dans l'eau (c'est la liaison entre un hétéroatome et un atome possédant un doublet libre).
- ▶ Conséquence : On peut avoir formation de deux phases due à l'eau contenue dans l'essence ce qui donne une démixtion du carburant.
 - 2 L'équation chimique (réaction (1)) de la synthèse de l'éthanol liquide :

$$C_6H_{12}O_{6(s)} \rightleftharpoons 2CH_3-CH_2-OH_{(\ell)} + 2CO_{2(g)}$$
 (1)

3 • L'enthalpie standard de cette réaction à 298 K.

D'après la guestion 2 on a :

$$\boldsymbol{\Delta_{r}H^{o}} = 2\boldsymbol{\Delta_{f}H^{o}}(CH_{3} - CH_{2} - OH_{(\ell)}) + 2\boldsymbol{\Delta_{f}H^{o}}(CO_{2(g)}) - \boldsymbol{\Delta_{f}H^{o}}(C_{6}H_{12}O_{6(s)}) \tag{EA}$$

Sachant que:

$$\Delta_{\mathrm{comb}}H^{o} = 6[\boldsymbol{\Delta_{\mathrm{f}}}\mathbf{H^{o}}(\mathrm{CO}_{2\,\mathrm{(g)}}) + \boldsymbol{\Delta_{\mathrm{f}}}\mathbf{H^{o}}(\mathrm{H}_{2}\mathrm{O}_{\mathrm{(g)}})] - [6\boldsymbol{\Delta_{\mathrm{f}}}\mathbf{H^{o}}(\mathrm{O}_{2\,\mathrm{(g)}}) + \boldsymbol{\Delta_{\mathrm{f}}}\mathbf{H^{o}}(\mathrm{C}_{6}\mathrm{H}_{12}\mathrm{O}_{6\,\mathrm{(s)}})] \tag{EB}$$

D'après les équations (EA) et (EB) on conclut que :

$$\mathbf{\Delta_r}\mathbf{H}^{\mathbf{o}}(298K) = -2342 \text{ kJ mol}^{-1}$$

<u>Commentaire</u>: $\Delta_r \mathbf{H}^o(298K) < 0$: la réaction est exothermique (dégage de la chaleur).

4 • L'équation bilan de la réaction (notée (2)).

$$CH_3 - CH_2 - OH_{(\ell)} + 3O_{2(g)} \Longrightarrow + 2CO_{2(g)} + 3H_2O_{(\ell)}$$
 (2)

- ▶ Le bioéthanol est un carburant propre puisque le dioxyde de carbone formé en quantité réduite (comparaison avec les carburants fossiles) est dissout dans l'eau.
- 5 L'enthalpie standard molaire de la réaction de combustion de l'éthanol (liquide) à 298 K d'après l'expérience :

On a : $\Delta \mathbf{H^o} = -C_e^o(T_f - T_i)$ (le signe (-) puisque on a énergie fournie par la réaction absorbée par l'eau) Comme $C_e^o = \frac{m_e}{M(\mathrm{H_2O})}C_{e,m}^o$ alors

$$\Delta \mathbf{H}^{\mathbf{o}} = -\frac{m_e}{M(\mathrm{H}_2\mathrm{O})} C_{e,m}^o(T_f - T_i) \xrightarrow{\mathbf{A.N}} \Delta \mathbf{H}^{\mathbf{o}} = -83,33 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Pour une mole d'éthanol de masse molaire $M=46\,\mathrm{~g\,mol^{-1}}$ on a :

$$\Delta_{\mathbf{r}}\mathbf{H}^{\mathbf{o}} = \frac{1}{n}\Delta\mathbf{H}^{\mathbf{o}} \Longrightarrow \Delta_{\mathbf{r}}\mathbf{H}^{\mathbf{o}} = \frac{3}{46}\Delta\mathbf{H}^{\mathbf{o}} \xrightarrow{A.N} \Delta_{\mathbf{r}}\mathbf{H}^{\mathbf{o}} = -1277, 8 \text{ kJ mol}^{-1}$$

6 • Calcul de l'enthalpie standard molaire de la réaction de combustion de l'éthanol (liquide) à 298 K :

$$\boldsymbol{\Delta_{r}H^{o}} = 3\boldsymbol{\Delta_{f}H^{o}}(H_{2}O) + 2\boldsymbol{\Delta_{f}H^{o}}(CO_{2}) - \boldsymbol{\Delta_{f}H^{o}}(C_{2}H_{6}O) \xrightarrow{\quad A.N \quad } \boldsymbol{\Delta_{r}H^{o}} = -1411 \text{ kJ mol}^{-1}$$

l'oxygène étant un corps simple pris dans son état de référence.

Conclusion: les deux valeurs sont proches (on a négligé l'énergie absorbée par le calorimètre).

7 • Association des différents domaines du diagramme potentiel-pH de l'élément manganèse :

L'élément	Mn	MnO_2	Mn(OH) ₂	Mn ₂ ⁺	MnO_4^-	MnO ₄ ²⁻
n.o	0	IV	II	II	VII	VI
Domaine	6	3	5	4	1	2

 $8 \bullet L'$ équation de la frontière verticale séparant l'espèce 4 de l'espèce 5.

$$\operatorname{Mn}^{2+} + 2\operatorname{OH}^{-} \Longrightarrow \operatorname{Mn}(\operatorname{OH})_{2}$$

On a : $\mathbf{K}_s = [\mathrm{Mn}^{\,2+}][\mathrm{OH}^-]^2$ et comme $C = 10^{-2} \; \mathrm{mol} \, \mathrm{L}^{-1}$ et $\mathbf{K}_s = 10^{-12,7}$ alors

$$\mathbf{pOH}_f = 5,35 \Longrightarrow \mathbf{pH}_f = 8,65$$

9 •

▶ L'équation de la frontière verticale entre CH_3COOH et CH_3COO^- : C'est une réaction acidobasique :

$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$$

On a : $\mathbf{pH} = \mathbf{pK_a} + \log \frac{[\mathrm{CH_3COO^-}]}{[\mathrm{CH_3COOH}]}$; à la frontière on a : $[\mathrm{CH_3COO^-}] = [\mathrm{CH_3COOH}]$ donc :

$$\mathbf{pH}_f = \mathbf{pK_a} \xrightarrow{A.N} \mathbf{pH}_f = 4,8$$

▶ L'équation de la frontière entre CH₃COOH et CH₃CH₂OH : C'est une réaction d'oxydo-réduction :

$$CH_3COOH + 4H^+ + 4e^- \rightleftharpoons CH_3CH_2OH + H_2O$$

On a :
$$\mathbf{E} = \mathbf{E}^o + \frac{0.06}{4} \log \frac{[\mathrm{CH_3COOH}][\mathrm{H^+}]^4}{[\mathrm{CH_3CH_2OH}]}$$

à la frontière [CH₃COOH]=[CH₃CH₂OH] donc :

$$\mathbf{E}_f = \mathbf{E}^o + 0.06 \log[\mathrm{H}^{=}] \xrightarrow{\mathbf{A.N}} \mathbf{E}_f = 0.037 - 0.06 \mathbf{pH}$$

10 • Détermination graphique du potentiel standard du couple MnO₂/Mn²⁺.

On a : $MnO_2 + 4H^+ + 2e^- \Longrightarrow Mn^{2+} + 2H_2O$ Donc

$$\mathbf{E} = \mathbf{E}^o + \frac{0.06}{2} \log \frac{[H^+]^4}{[\text{Mn}^{2+}]}$$

Comme [Mn $^{2+}$]= $10^{-2}~$ mol L $^{-1}$ et à pH = 0 on a E = 1,3 V (d'après le graphe) alors :

$${f E}^o({
m MnO}_2/{
m Mn}^{\,2+})=1,24\; V$$

11 • La configuration électronique de l'ion Mn²⁺.

Pour 25 Mn et en respectant les trois règles de remplissage (Pauli , Klechkovsky et Hund) :

A Règle (principe) d'exclusion de Pauli :

«Dans un atome ,deux électrons quelconques ne peuvent pas avoir les quatre nombres quantiques identiques»

A/ Règle de Klechkovsky:

« Les sous-couches se remplissent par énergie croissante :

Les niveaux d'énergie $E_{(n,\ell)}$ augmentent avec $(n+\ell)$.

 $E_{(n,\ell)}$ qui ont même valeur de $(n+\ell)$,augmente avec n»

△/ Règle de Hund:

«Lorsque des électrons sont dans des orbitales dégénérées (de même énergie) la configuration la plus stable est celle pour laquelle le nombre quantique magnétique total de spin M_s est maximal.»

$$^{25}\mathrm{Mn}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$$

pour $^{25}\mathrm{Mn}^{2+}$ l'élément manganèse a perdu deux électrons (les plus externe (4s)) ce qui donne :

$$^{25}\mathrm{Mn}^{2+}:1s^22s^22p^63s^23p^63d^54s^0$$

12 • Description du protocole pour l'étape de dilution :

Soient V_1 le volume pris de la solution S_1 et V_e le volume d'eau nécessaire pour la dilution :

Comme : $C_2(V_e + V_1) = C_1V_1$ et $V_1 + V_e = 50$ mL alors

$$V_1 = 5 \ mL$$
 et $V_e = 45 \ mL$

Protocole expérimental

Dans une fiole jaugée de 50 mL , on met une quantité d'eau distillée(moins de la moitié), à l'aide d'une pipette (de préférence de 5 mL) on mesure exactement 5 mL de la solution S_1 qu'on ajoute dans la fiole, on ferme et on agite doucement afin d'homogénéiser la solution , on complète avec l'eau distillée jusqu'au trait de jauge, on agite doucement.(La solution S_2 est préparée)

13 • L'équation de la réaction qui aura lieu entre l'éthanol et MnO_4^- en milieu acide. Sachant que :

- $MnO_4^- + 8H^+ + 5e^- \Longrightarrow Mn^{2+} + 4H_2O$
- $CH_3COOH + 4e^- + 4H^+ \rightleftharpoons CH_3CH_2OH + H_2O$

Il en résulte que :

$$4\,\mathrm{MnO_4^-} + 12\,\mathrm{H^+} + 5\,\mathrm{CH_3CH_2OH} \Longrightarrow 4\,\mathrm{Mn^{\,2+}} + 5\,\mathrm{CH_3COOH} + 11\,\mathrm{H_2O}$$

14 • L'équation de la réaction du dosage en milieu acide :

$$MnO_4^- + 8H^+ + 5Fe^{2+} \Longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$

15 • On ne peut pas doser directement l'éthanol par MnO_4^- car la réaction est lente et nécessite un chauffage (augmentation de la température).

Rappel

Une réaction du dosage doit être rapide et totale.

16 • Calcul de la quantité d'éthanol n_2 contenue dans la solution S_2 , ainsi la concentration C_1 en éthanol de la solution S_1 .

On pose pour l'ion $MnO_4^-: n_o = n_r + n_d$

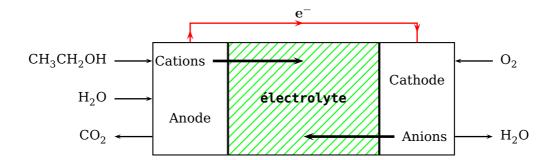
Avec : n_o le nombre de mole initial ; n_r le nombre de mole réagit et n_d le nombre de mole dosé. C_4V_E

d'après la question 14 on a : $n_d = \frac{C_4 V_E}{5}$ et comme $n_d = C_3 V_3$ donc

$$n_r = C_3 V_3 - \frac{C_4 V_E}{5} \xrightarrow{\text{A.N}} n_r = 6 \times 10^{-4} \,\text{mol}$$

Sachant que:

$$\frac{n_r}{4} = \frac{n(\mathrm{CH_3CH_2OH})}{5} \Longrightarrow n(\mathrm{CH_3CH_2OH}) = \frac{5}{4}n_r$$


Et comme $n_2 = \frac{50}{2} n_r$ [Le volume de la solution S_2 est 5 mL , le volume de S_2 dosé est 2 mL] alors :

$$n_2 = 18,75 \times 10^{-3} \, \text{mol} \Longrightarrow C_1 = 3,75 \, \text{mol} \, \text{L}^{-1}$$

17 • Le mélange est acide pour ne pas former Mn(OH)_{2(s)}.

La réaction chimique est possible puisque MnO_4^- et $CH_3CH_2^-OH$ n'ont pas de domaine commun, donc ils sont instables.

18 • Schéma de la pile :

Rappel

- ullet Anode \Longrightarrow Oxydation \Longrightarrow perte d'électrons.
- ullet Cathode \Longrightarrow Réduction \Longrightarrow gain d'électrons.

19 •

- ▶ Les avantages :
- L'éthanol produit à partir de céréales (blé, maïs,....) ou de betteraves à sucre (écologique).
- L'éthanol est liquide à température ambiante (simple à stocker).
- Moins d'encombrement.
- Bon rendement énergétique.
- Moins polluants.
- Utilise l'oxygène gazeux (air).
- ► Inconvénients :
- Production de l'éthanol comme combustible par fermentation qui est un phénomène très lent.
- **20** Les demi-équations à chaque électrode :
- ► Anode (Oxydation):

$$CH_3CH_2OH + H_2O \Longrightarrow CH_3COOH + 4e^- + 4H^+(E1)$$
 $-\Delta_r G^o_1$

► Cathode (Réduction) :

$$O_2 + 4 e^- + 4 H^+ \Longrightarrow 2 H_2 O(E2)$$
 $\Delta_r G^o_2$

21 • La tension à vide standard de la pile :

Sachant que la réaction (2)= (E1)+3(E2) donc : $\Delta_{\mathbf{r}}\mathbf{G}^{\mathbf{o}} = 3\Delta_{\mathbf{r}}\mathbf{G}^{\mathbf{o}}_{2} - \Delta_{\mathbf{r}}\mathbf{G}^{\mathbf{o}}_{1}$ Or $\Delta_{\mathbf{r}}\mathbf{G}^{\mathbf{o}} = -n\mathscr{F}\mathbf{E}^{o}$ donc :

$$\boldsymbol{\Delta_{\mathbf{r}}\mathbf{G^o}} = -12\mathscr{F}[\mathbf{E}^o(\mathrm{O_2/H_2O}) - \mathbf{E}^o(\mathrm{CO_2/CH_3CH_2OH})] \Longrightarrow \boldsymbol{\Delta_{\mathbf{r}}\mathbf{G^o}} = -12\mathscr{F}U_{\mathrm{vide}}$$

Déterminons $\Delta_{\mathbf{r}}\mathbf{G}^{\mathbf{o}} = \Delta_{\mathbf{r}}\mathbf{H}^{\mathbf{o}} - T\Delta_{\mathbf{r}}\mathbf{S}^{\mathbf{o}}$ à 298 K :

• L'enthalpie standard :

$$\mathbf{\Delta_r H^o} = 2\mathbf{\Delta_f H^o}(\mathrm{CO_{2\,(g)}}) + 3\mathbf{\Delta_f H^o}(\mathrm{H_2O_{(\ell)}}) - \mathbf{\Delta_f H^o}(\mathrm{CH_3CH_2OH_{(\ell)}})$$

$$\Delta_{\mathbf{r}}\mathbf{H}^{\mathbf{o}} = -1411 \text{ kJ mol}^{-1} (Question6)$$

• L'entropie standard :

$$\Delta_{\mathbf{r}} \mathbf{S^o} = 2S^o(\mathbf{CO_2}_{(\mathbf{g})}) + 3S^o(\mathbf{H_2O_{(\ell)}}) - S^o(\mathbf{CH_3CH_2OH_{(\ell)}}) - 3S^o(\mathbf{O_2}_{(\mathbf{g})})$$

Application Numérique :

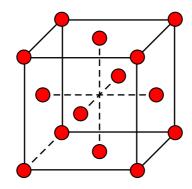
$$\Delta_{\mathbf{r}}\mathbf{S}^{\mathbf{o}} = -138\,\mathrm{J\,K}^{-1}\,\mathrm{mol}^{-1}$$

Il en résulte que :

$$\mathbf{\Delta_r}\mathbf{G^o}(298K) = -1370 \text{ kJ mol}^{-1}$$

D'où:

$$U_{\mathsf{vide}} = \mathbf{E}^o(\mathrm{O}_2/\mathrm{H}_2\mathrm{O}) - \mathbf{E}^o(\mathrm{CH}_3\mathrm{COOH}/\mathrm{CH}_3\mathrm{CH}_2\mathrm{OH}) \xrightarrow{\quad \mathbf{A.N} \quad } U_{\mathsf{vide}} = 1,18\ V$$


22 • Le Rhodium dans la classification périodique :

Sachant que : 45 Rh : $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^75s^2$

Il en résulte que :

- Ligne (plus grande valeur de n): 5
- Colonne (la somme des électrons de valence) : 2+7=9.
- 23 Le rayon atomique de l'élément Rh.

Puisque la structure est un CFC donc :

- Le nombre de motifs par maille : $N = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} \Longrightarrow N = 4$
 - On a contact suivant la petite diagonale donc : $a\sqrt{2} = 4R$
 - La masse volumique :

$$\rho = \frac{N\mathcal{M}(Rh)}{\mathcal{N}_A a^3}$$

• Il en résulte que :

$$R = 1,34$$
 Å