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m Lois de la mécanique d’un systeme matériel

Modélisation d’un systeme matériel

On peut modéliser un systeme matériel de deux facons :

e Approche discrete : M = Z m;

e Approche continue : M = / / / pdT

Dans la suite de I’exposé, on utilisera souvent la notation discrete, mais la notation continue est tout-a-fait
utilisable. Il faut alors remplacer la somme discréte sur 1’indice ¢ par une intégrale sur le volume 7 et les
masses m; par la masse élémentaire d>m = p d°.

m Théoreme du centre d’inertie (ou de la résultante cinétique

ou de la résultante dynamique ou du centre de masse)

m Centre de masse

{g — Cenxtre de masse —

Le barycentre, ou centre de masse ou centre d’inertie, noté G :

MO?:Zm,OW,

ﬁ —Remarque —

lAvec un systeme continu, on a :

oc [[[ sz = [[[ pO5tas
m Quantité de mouvement d’un systeme

{g — Quantité de mouvement —

On appelle quantité de mouvement totale d’un systeme, notée ? :

%

g —Remarque —

IAvec un systeme continu, on a :
?I///pU(M)dBT
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10.2 Théoréme du moment cinétique 73

En introduisant le centre de d’inertie, on obtient :

P = Mg

'?' _ —ﬂ\éoréme —_ iiz
§3

Par application de la deuxieme loi de Newton , on obtient alors :
d? —_—
W = Z Fext

Ceci constitue le théoreme du centre d’inertie (ou de la résultante cinétique ou de la résultante dynamique
ou encore du centre de masse).

m Référentiel barycentrique

{g — R éférentiel caliléen —

Un référentiel barycentrique est un référentiel qui a pour origine le centre de masse du systeme, et qui est
animé d’un mouvement de translation uniforme par rapport a un référentiel galiléen. On le notera R*.

On note X * la grandeur X évaluée dans le référentiel barycentrique.
L) —Propriété —

Dans un référentiel barycentrique, la quantité de mouvement totale 1;*? = ? /R~ estnulle :

P =T

g —Remaraue —

Pour un systéme ouvert, on considere la masse a I’instant ¢, et la masse a I’instant ¢ + dt du systeme, plus
la masse éjectée durant dt. On peut donc définir dans ce cas un systeme fermé.

Moment cinétique

m Théoreme du moment cinétique

Considérons le moment cinétique par rapport a O d’un point matériel M de masse m, animé de la vitesse
7 dans le référentiel R. On a :

—

]
i

ﬁ} — Moment cinétique —

On définit alors le moment cinétique pour un ensemble de points (systeéme matériel) par :

76} m = YO0, Am

%
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74 MECANIQUE DU SOLIDE

L) —Propriété —
Le transport de moment cinétique peut s’écrire de la fagon suivante :

m/nzm/n+m/\?

Avec ? la quantité de mouvement totale du systeme. Le moment cinétique et la quantité de mouvement
constituent donc un torseur cinétique.

m Premier théoreme de Keenig

En partant de la décomposition de la vitesse :

3
v = 0&m A+ v

=

ol vy /R est la vitesse du centre de masse GG par rapport au référentiel R et v; la vitesse du point M;
dans le référentiel barycentrique, on obtient le premier théoreme de Keenig :

5% —Premier théoréme —

50,/ = 7(G)* +0G A MTG,

Le moment cinétique par rapport a un point fixe est donc égal a la somme du moment cinétique dans le
référentiel barycentrique et du moment cinétique du centre d’inertie affecté de toute la masse du systeme :
on décompose donc le moment cinétique total en un moment cinétique lié au mouvement de rotation du
systeme et a un autre lié au mouvement de translation de son centre d’inertie.

Le moment cinétique, dans le référentiel barycentrique, ne dépend pas du point par rapport auquel on le
calcule. On I’écrit donc :

S

9@ T90) T =9

g —Remaraue —

Il plus facile d’évaluer ? dans le référentiel barycentrique puisque dans celui-ci, le mouvement du systeme
considéré est un mouvement de rotation

m Théoreme du moment cinétique en un point fixe d’un
référentiel galiléen

Soit O un point fixe par rapport a un référentiel galiléen R1. On obtient :

% = ZO i/\Fext = ;M(O)(Fext)

%

m Théoreme du moment cinétique en un point mobile d’'un
référentiel galiléen

Soit A un point mobile par rapport au référentiel galiléen R;. On peut alors écrire :

d*—)
%:Zm@m@

%
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10.3 Théoréme de I'énergie cinétique 75

m Théoreme du moment cinétique en un point fixe d’un
référentiel non galiléen

Soit B un point fixe par rapport a un référentiel non galiléen R. On obtient :

do s}/

v e
7 F, F,

ZM(O) Fext)+M(0)( ie) + Moy (Fic)

m Théoreme du moment cinétique dans le référentiel
barycentrique

En particulier, si R référentiel non galiléen est le référentiel barycentrique R* etq_ue> le Bgint fixe B estle
point G, centre d’inertie du systéme,le moment des forces d’inertie de Coriolis M (¢ (Fi.) est nul car le
référentiel barycentrique R* est en translation par rapport & un référentiel R, galiléen et le moment des
forces d’inertie d’entrainement M (o) (Fic) est nul car I’accélération de G est nulle dans le référentiel
barycentrique. On obtient alors :

Ao /me d
9(G)/R 0<G> Z G A Fo

dt

Dans ce cas, on s’affranchit des forces d’inertie. Ce cas particulier du référentiel barycentrique est donc
treés intéressant.

m Représentation torsorielle

On a les représentations suivantes :

Torseur Cinématique
9(0)

—
R =3 Feu
(O) Zz OM A Fext

Torseur Dynamique {

Energie cinétique

m Théoreme de I’énergie cinétique

ﬁ —E neraie cinétique —

Par définition, pour un ensemble de points matériels, 1’énergie cinétique est définie de la fagcon suivante :

1
Ec=Z§miU22

ﬁ —Remarque —

Pour un systeme continu, 1’énergie cinétique est définie de la facon suivante :

b [ff ot
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76 MECANIQUE DU SOLIDE

m Second théoreme de Keenig

Le second théoréme de Keenig s’énonce de la fagon suivante :

QT — Second théoréme —

* 1 2
EC :Ec + §MU(G)

L’énergie cinétique d’un systeme matériel est égale a la somme de son énergie cinétique dans le référentiel
barycentrique et de 1’énergie cinétique du centre d’inertie affecté de toute la masse du systeme. C’est
encore une fois la somme d’une énergie cinétique liée a la rotation su systeme et d’une énergie cinétique
liée a la translation de son centre d’inertie.

m Théoreme de I'énergie cinétique

En partant de I’expression de I’énergie cinétique, on obtient :

§ — Théoreme de I'éneraie cinétique —

AEC - Wext ol VVint

ou Wex¢ est le travail des forces extérieures et Wiy, le travail des forces intérieures.

g —Remarque —

Si le systeme est un solide, donc indéformable, le travail Wi, des forces intérieures est nul et :

AEC — Wext

m Autres formes du théoreme de I’énergie cinétique

Sous forme différentielle, on a :
dEc = 5Wext + 5VVint

En utilisant les puissances, on obtient I’expression suivante (appelée parfois théoreme de la puissance
cinétique) :

dE.
dt

= Pewt + Pint

.. . . — CL .
En distinguant les forces conservatives FG et les forces non conservatives F;,., on peut aussi écrire :
SW(F.) = —dE,

ou I, est I’énergie potentielle associée la force conservative ?C En introduisant I’énergie mécanique
E,, = E,+ E., onaalors :

ou une de ses autres formes (que les forces non conservatives soient intérieures ou extérieures ne change
rien).
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10.4 Cas du solide 77

m Cas du solide

{g — Solide —

On définit un solide par :
V(A, B) € Systeme? || AB |= C*e

C’est donc un systeme indéformable.

m Cinétique

Considérons un solide, en mouvement dans un référentiel galiléen ;. Soit un référentiel R 1ié au solide.
Soient A et M deux points du solide. On a la relation suivante :

ﬁ} — Champ des vitesses dans un solide —
V() = 1TA)> aF m A ﬁ

ou E?R /R, €stle vecteur rotation instantanée de R par rapporta R;. ﬁR /R, €st défini par :

373/7%1 =0 e

si_ e est le vecteur définissant I’axe de la rotation de R par rapport a R, et si 6 est I’angle de rotation de
‘R par rapport R ;.

m Théoreme du moment cinétique
m Solide possédant un point fixe

Soit un solide possédant un point fixe, notée C. D’apres la relation précédente, on obtient, pour tout point
M du solide :

N ——

m Solide possédant un axe fixe

Le vecteur rotation instantanée est porté par ’axe fixe (A). En appliquant le théoréme du moment
cinétique en un point O de cet axe (A) et en projetant sur un vecteur unitaire e porté par ce axe, on i)

obtient : ﬁ&

dt
dool-eA) ——
( iit ( = M(0),ext " €A
do(A
(4) _ Ma)ext
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78 MECANIQUE DU SOLIDE

En posant Ja = Z m; H; M; pour un systeme discret ou Ja) = / M H? dm pour un systeme continu,
les point H; étant les projetés des points M; du solide (H projeté de M) sur I’axe fixe, ici (A), ona:
o) = Jayw = Ja) 0

Ja est appelé moment d’inertie du solide par rapport a I’axe A.

On obtient alors :

dO’(A) dw ..
un J(A)E =Ja)0 = Ma)ext

m Théoreme de Huyghens

N

S

— Théoréme de Huychens —

Soient (A) et (Ag) deux droites paralleles distants de d, (A¢) passant par le centre d’inertie G du
systeéme. On a alors :

J(A) = J(Ac) + Md?

m Théoreme de I’énergie cinétique
m Energie cinétique dans le cas général

11 faut utiliser le second théoreme de Keenig :

* 1 2
EC:EC +§MVV(G)

m Energie cinétique d’un solide possédant un point fixe

Soit un solide possédant un point fixe, noté C. On obtient, en partant de I’expression générale de 1’énergie
cinétique, et du champ de vitesses, la relation suivante :

1

m Energie cinétique d’un solide possédant un axe fixe

Soit un solide possédant un axe fixe, noté A. On obtient alors :

1
EC = 5 J(A) w2

[ W:W:W.l Energie cinétique d’un solide en translation

Dans le cas d’un solde en translation, tous les points du solide ont méme vitesse, celle du centre d’inertie,
et on a alors :

1
E.=3 M vl
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10.5 Contact entre deux solides 79

Contact entre deux solides

Types de mouvements relatifs

Il existe trois types de mouvements relatifs :
e mouvement de translation,
e mouvement de rotation,

e mouvement de roulement.

Vitesse de glissement

On considere deux solides en contact. A un instant t donné, on suppose que les points I, du solide 1, et I,
du solide 2, sont en contact. On obtient I’expression de la vitesse de glissement, noté 7g :

79241 = V(I2)/R ~V(I1)/R

Lois de Coulomb pour le glissement

Considérons un contact. La réaction ﬁ peut se décomposer en deux forces :

° ? : la force de frottement,

° ﬁ : la réaction normale au support.

En l'absence de glissement

,O — Cas particulier —

En I’absence de glissement, on a :

T < fo I N

Ou fj est le ceefficient de frottement statique.

Avec glissement

S’il y a glissement, on a :
10 = FIN]

Ou f est le ceefficient de frottement dynamique.

4 —Remaraue —

On pourra noter que le coefficient de frottement dynamique est inférieur au coefficient de frottement sta-
tique : f < fo.

Dans la vie courante, on peut remarquer qu’il est plus facile de pousser un objet lourd sur le sol une fois
que son mouvement est amorcé.
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