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Mécanique du solide
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72 MÉCANIQUE DU SOLIDE

10.1 Lois de la mécanique d’un système matériel

10.1.1 Modélisation d’un système matériel

On peut modéliser un système matériel de deux façons :

• Approche discrète : M =
∑

i

mi

• Approche continue : M =

∫∫∫

τ

ρ d3τ

Dans la suite de l’exposé, on utilisera souvent la notation discrète, mais la notation continue est tout-à-fait
utilisable. Il faut alors remplacer la somme discrète sur l’indice i par une intégrale sur le volume τ et les
masses mi par la masse élémentaire d3m = ρ d3τ .

10.1.2 Théorème du centre d’inertie (ou de la résultante cinétique

ou de la résultante dynamique ou du centre de masse)

10.1.2.1 Centre de masse

Le barycentre, ou centre de masse ou centre d’inertie, noté G :

M
−−→
OG =

∑

i

mi
−−→
OMi

— Centre de masse —

Avec un système continu, on a :

−−→
OG

∫∫∫

τ

ρ d3τ =

∫∫∫

τ

ρ
−−→
OM d3τ

— Remarque —

10.1.2.2 Quantité de mouvement d’un système

On appelle quantité de mouvement totale d’un système, notée
−→
P :

−→
P =

∑

i

mi
−→vi

— Quantité de mouvement —

Avec un système continu, on a :

−→
P =

∫∫∫

τ

ρ−−→v(M) d
3τ

— Remarque —
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10.2 Théorème du moment cinétique 73

En introduisant le centre de d’inertie, on obtient :
−→
P =M −−→v(G)

Par application de la deuxième loi de Newton , on obtient alors :

d
−→
P

dt
=
∑−−→

Fext

Ceci constitue le théorème du centre d’inertie (ou de la résultante cinétique ou de la résultante dynamique
ou encore du centre de masse).

— Théorème —

10.1.3 Référentiel barycentrique

Un référentiel barycentrique est un référentiel qui a pour origine le centre de masse du système, et qui est
animé d’un mouvement de translation uniforme par rapport à un référentiel galiléen. On le notera R∗.

— Référentiel galiléen —

On note X∗ la grandeurX évaluée dans le référentiel barycentrique.

Dans un référentiel barycentrique, la quantité de mouvement totale
−→
P ∗ =

−→
P /R∗ est nulle :

−→
P ∗ =

−→
0

— Propriété —

Pour un système ouvert, on considère la masse à l’instant t, et la masse à l’instant t+ dt du système, plus
la masse éjectée durant dt. On peut donc définir dans ce cas un système fermé.

— Remarque —

10.2 Théorème du moment cinétique

10.2.1 Moment cinétique

Considérons le moment cinétique par rapport à O d’un point matériel M de masse m, animé de la vitesse
−→v dans le référentiel R. On a :

−−→σ(O)/R =
−−→
OM ∧m−→v

On définit alors le moment cinétique pour un ensemble de points (système matériel) par :

−−→σ(O)/R =
∑

i

−−→
OMi ∧m−→vi

— Moment 
inétique —
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74 MÉCANIQUE DU SOLIDE

Le transport de moment cinétique peut s’écrire de la façon suivante :

−−→σ(A)/R = −−→σ(O)/R +
−→
AO ∧ −→

P

Avec
−→
P la quantité de mouvement totale du système. Le moment cinétique et la quantité de mouvement

constituent donc un torseur cinétique.

— Propriété —

10.2.2 Premier théorème de Kœnig

En partant de la décomposition de la vitesse :

−→vi = −−→v(G)/R +
−→
v∗i

où −−→v(G)/R est la vitesse du centre de masse G par rapport au référentiel R et
−→
v∗i la vitesse du point Mi

dans le référentiel barycentrique, on obtient le premier théorème de Kœnig :

−−→σ(O)/R =
−−−→
σ(G)∗ +

−−→
OG ∧M −−→v(G)

Le moment cinétique par rapport à un point fixe est donc égal à la somme du moment cinétique dans le
référentiel barycentrique et du moment cinétique du centre d’inertie affecté de toute la masse du système :
on décompose donc le moment cinétique total en un moment cinétique lié au mouvement de rotation du
système et à un autre lié au mouvement de translation de son centre d’inertie.

— Premier théorème —

Le moment cinétique, dans le référentiel barycentrique, ne dépend pas du point par rapport auquel on le
calcule. On l’écrit donc :

−−→
σ∗

(G) =
−−→
σ∗

(O) =
−−→
σ∗

(A) =
−→
σ∗

Il plus facile d’évaluer
−→
σ∗ dans le référentiel barycentrique puisque dans celui-ci, le mouvement du système

considéré est un mouvement de rotation.

— Remarque —

10.2.3 Théorème du moment cinétique en un point fixe d’un

référentiel galiléen

Soit O un point fixe par rapport à un référentiel galiléen R1. On obtient :

d−−→σ(O)/R1

dt
=
∑

i

−−→
OMi ∧

−−→
Fext =

∑

i

−−−→M(O)(
−−→
Fext)

10.2.4 Théorème du moment cinétique en un point mobile d’un

référentiel galiléen

Soit A un point mobile par rapport au référentiel galiléen R1. On peut alors écrire :

d−−→σ(A)/R1

dt
=
∑

i

−−→
AMi ∧

−−→
Fext −−−→v(A) ∧

−→
P
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10.3 Théorème de l’énergie cinétique 75

10.2.5 Théorème du moment cinétique en un point fixe d’un

référentiel non galiléen

Soit B un point fixe par rapport à un référentiel non galiléen R. On obtient :

d−−→σ(B)/R

dt
=
∑

i

−−−→M(O)(
−−→
Fext) +

−−−→M(O) (
−→
Fie) +

−−−→M(O) (
−→
Fic)

10.2.6 Théorème du moment cinétique dans le référentiel

barycentrique

En particulier, si R référentiel non galiléen est le référentiel barycentrique R∗ et que le point fixe B est le
point G, centre d’inertie du système,le moment des forces d’inertie de Coriolis

−−−→M(O) (
−→
Fic) est nul car le

référentiel barycentrique R∗ est en translation par rapport à un référentiel R1 galiléen et le moment des
forces d’inertie d’entraînement

−−−→M(O) (
−→
Fie) est nul car l’accélération de G est nulle dans le référentiel

barycentrique. On obtient alors :

d−−→σ(G)/R∗

dt
=
d−−→σ(G)

∗

dt
=
∑

i

−−→
GMi ∧

−−→
Fext

Dans ce cas, on s’affranchit des forces d’inertie. Ce cas particulier du référentiel barycentrique est donc
très intéressant.

10.2.7 Représentation torsorielle

On a les représentations suivantes :

Torseur Cinématique

{−→
P
−−→σ(O)

Torseur Dynamique

{−→
R =

∑−−→
Fext−−−→M(O) =
∑

i

−−→
OMi ∧

−−→
Fext

10.3 Théorème de l’énergie cinétique

10.3.1 Énergie cinétique

Par définition, pour un ensemble de points matériels, l’énergie cinétique est définie de la façon suivante :

Ec =
∑

i

1

2
mi v

2
i

— É nergie 
inétique —

Pour un système continu, l’énergie cinétique est définie de la façon suivante :

Ec =

∫∫∫
1

2
ρ (M) v2(M) d

3τ

— Remarque —

Saint Joseph - LaSalle CPGE TSI



P
hy
si
qu
e
-
C
hi
m
ie
-
C
P
G
E
T
S
I
-
-
É
ta
bl
is
se
m
en
tS
ai
nt
Jo
se
ph
-
L
aS
al
le

76 MÉCANIQUE DU SOLIDE

10.3.2 Second théorème de Kœnig

Le second théorème de Kœnig s’énonce de la façon suivante :

Ec = E∗

c +
1

2
M v2(G)

L’énergie cinétique d’un système matériel est égale à la somme de son énergie cinétique dans le référentiel
barycentrique et de l’énergie cinétique du centre d’inertie affecté de toute la masse du système. C’est
encore une fois la somme d’une énergie cinétique liée à la rotation su système et d’une énergie cinétique
liée à la translation de son centre d’inertie.

— Se
ond théorème —

10.3.3 Théorème de l’énergie cinétique

En partant de l’expression de l’énergie cinétique, on obtient :

∆Ec =Wext +Wint

où Wext est le travail des forces extérieures et Wint le travail des forces intérieures.

— Théorème de l'énergie 
inétique —

Si le système est un solide, donc indéformable, le travail Wint des forces intérieures est nul et :

∆Ec =Wext

— Remarque —

10.3.4 Autres formes du théorème de l’énergie cinétique

Sous forme différentielle, on a :

dEc = δWext + δWint

En utilisant les puissances, on obtient l’expression suivante (appelée parfois théorème de la puissance
cinétique) :

dEc
dt

= Pext + Pint

En distinguant les forces conservatives
−→
Fc et les forces non conservatives

−→
Fnc, on peut aussi écrire :

δW (
−→
Fc) = −dEp

où Ep est l’énergie potentielle associée la force conservative
−→
Fc. En introduisant l’énergie mécanique

Em = Ep + Ec, on a alors :

∆Em =W (
−→
Fnc)

ou une de ses autres formes (que les forces non conservatives soient intérieures ou extérieures ne change
rien).
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10.4 Cas du solide 77

10.4 Cas du solide

On définit un solide par :

∀(A,B) ∈ Système2 ‖ −−→
AB ‖= Cte

C’est donc un système indéformable.

— Solide —

10.4.1 Cinétique

Considérons un solide, en mouvement dans un référentiel galiléen R1. Soit un référentiel R lié au solide.
Soient A et M deux points du solide. On a la relation suivante :

−−→v(M) =
−−→v(A) +

−−→
MA ∧ −→ω

— Champ des vitesses dans un solide —

où −→ωR/R1
est le vecteur rotation instantanée de R par rapport à R1. −→ω R/R1

est défini par :

−→ω R/R1
= θ̇ −→ez

si −→ez est le vecteur définissant l’axe de la rotation de R par rapport à R1 et si θ est l’angle de rotation de
R par rapport R1.

10.4.2 Théorème du moment cinétique

10.4.2.1 Solide possédant un point fixe

Soit un solide possédant un point fixe, notée C. D’après la relation précédente, on obtient, pour tout point
M du solide :

−−→v(M) =
−→ω R/R1

∧ −−→
CM

10.4.2.2 Solide possédant un axe fixe

Le vecteur rotation instantanée est porté par l’axe fixe (∆). En appliquant le théorème du moment
cinétique en un point O de cet axe (∆) et en projetant sur un vecteur unitaire −→e∆ porté par ce axe, on
obtient :

d−−→σ(O)

dt
·−→e∆ =

−−−−−→M(O),ext ·−→e∆

d−−→σ(O) ·
−−→
e(∆)

dt
=

−−−−−→M(O),ext ·−→e∆
dσ(∆)

dt
= M(∆),ext
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78 MÉCANIQUE DU SOLIDE

En posant J∆ =
∑

i

miHiMi pour un système discret ou J(∆) =

∫
MH2 dm pour un système continu,

les point Hi étant les projetés des points Mi du solide (H projeté de M ) sur l’axe fixe, ici (∆), on a :

σ(∆) = J(∆) ω = J(∆) θ̇

J∆ est appelé moment d’inertie du solide par rapport à l’axe ∆.

On obtient alors :

dσ(∆)

dt
= J(∆)

dω

dt
= J(∆) θ̈ = M(∆),ext

10.4.3 Théorème de Huyghens

Soient (∆) et (∆G) deux droites parallèles distants de d, (∆G) passant par le centre d’inertie G du
système. On a alors :

J(∆) = J(∆G) +M d2

— Théorème de Huyghens —

10.4.4 Théorème de l’énergie cinétique

10.4.4.1 Énergie cinétique dans le cas général

Il faut utiliser le second théorème de Kœnig :

Ec = E∗

c +
1

2
M V 2

(G)

10.4.4.2 Énergie cinétique d’un solide possédant un point fixe

Soit un solide possédant un point fixe, noté C. On obtient, en partant de l’expression générale de l’énergie
cinétique, et du champ de vitesses, la relation suivante :

Ec =
1

2
−−→σ(C) ·−→ω

10.4.4.3 Énergie cinétique d’un solide possédant un axe fixe

Soit un solide possédant un axe fixe, noté ∆. On obtient alors :

Ec =
1

2
J(∆) ω

2

10.4.4.4 Énergie cinétique d’un solide en translation

Dans le cas d’un solde en translation, tous les points du solide ont même vitesse, celle du centre d’inertie,
et on a alors :

Ec =
1

2
M v2(G)
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10.5 Contact entre deux solides 79

10.5 Contact entre deux solides

10.5.1 Types de mouvements relatifs

Il existe trois types de mouvements relatifs :

• mouvement de translation,

• mouvement de rotation,

• mouvement de roulement.

10.5.2 Vitesse de glissement

On considère deux solides en contact. À un instant t donné, on suppose que les points I1, du solide 1, et I2,
du solide 2, sont en contact. On obtient l’expression de la vitesse de glissement, noté −→v g :

−→v g2→1 = −−→v(I2)/R −−−→v(I1)/R

10.5.3 Lois de Coulomb pour le glissement

Considérons un contact. La réaction
−→
R peut se décomposer en deux forces :

• −→
T : la force de frottement,

• −→
N : la réaction normale au support.

10.5.3.1 En l’absence de glissement

En l’absence de glissement, on a :

‖−→T ‖ ≤ f0 ‖
−→
N‖

— Cas parti
ulier —

Où f0 est le cœfficient de frottement statique.

10.5.3.2 Avec glissement

S’il y a glissement, on a :

‖−→T ‖ = f ‖−→N‖

Où f est le cœfficient de frottement dynamique.

On pourra noter que le coefficient de frottement dynamique est inférieur au coefficient de frottement sta-
tique : f < f0.
Dans la vie courante, on peut remarquer qu’il est plus facile de pousser un objet lourd sur le sol une fois
que son mouvement est amorcé.

— Remarque —
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