Lycée Naval, Spé 2.
PHENOMENES DE TRANSPORT. 01. Transport de charge.

Transport de charge - conduction électrique

1 Conservation de la charge électrique

La charge totale d’un systéme isolé se conserve au cours du temps.

1.1 Densité de charge et vecteur courant

Densité volumique de charge électrique

La description microscopique correspond & la donnée de chacune des particules
chargées; a ’échelle mésoscopique, on définit des grandeurs moyennées sur un
volume intermédiaire contenant un trés grand nombre de particules tout en restant
suffisamment petit par rapport & la taille totale du systéme afin de pouvoir étudier
I’évolution de ces grandeurs a ’échelle macroscopique.
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Considérons un élément de volume dr contenant une charge dq, on définit la
densité volumique de charge électrique :

_0q
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Dans un premier temps, on considére un seul type de porteurs de charge caractérisé
par une charge électrique ¢, une densité particulaire n (nombre de particules par

unité de volume) et une vitesse d’ensemble ¥ (vitesse moyenne de ces porteurs
de charge).

On définit le vecteur densité de courant électrique jtel que :

j:nq{)’

Généralisation : on considére maintenant N types de porteurs de charge : charge
¢;, densité particulaire n;, vitesse d’ensemble j;, le vecteur courant a alors pour
expression :

N
7= nig;
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Exemple du sodium métallique

Le sodium métallique est constitué d’ions sodium Nat fixes aux noeuds du réseau
et d’électrons de conduction e, libres de se déplacer au sein du volume.
— densités particulaires : la densité particulaire des ions est donnée par :
H 22 3
——— =2,65x 10 art. /cm
NN 2 part./

avec p la masse volumique du cristal et M la masse molaire atomique du sodium.

Njons =

Chaque élément sodium fournissant un électron de conduction, n.- = njons = N.

— densité volumique de charge : p=n xe+n x (—e) =0.
La densité volumique de charge est nulle en accord avec la neutralité du cristal.

— vecteur courant :

J = Nions€ Tions +ne—(—€)’l7e— = —nev,-
N~
=0
Il est donc possible d’avoir simultanément une densité volumique de charge nulle
et un vecteur courant non nul.

1.2 Intensité du courant électrique
Exemple a une dimension

Considérons pour simplifier un seul type de porteurs de charge (charge individuelle
g, densité particulaire n). On considére que les porteurs de charge se déplacent
tous a la vitesse U (en réalité la vitesse moyenne).

On peut alors aisément déterminer la charge qui traverse la section ¥ en une durée
dt :



dq = nqudtdS = jdSdt

volume du

S g=nq " cylindre

L’intensité du courant électrique est, par définition, la charge qui traverse une sec-
tion de conducteur par unité de temps. Dans le cas présent, 'intensité élémentaire

associée a la charge traversant dS s’écrit :

6q¢ nqudtdS .
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; g pendant dt, la charge qui traverse la section d’aire dS
: v 5 a pour expression
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Généralisation

Dans le cas général, il faut tenir compte de 'orientation relative du vecteur courant
et de la normale & la surface.
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La charge dq qui traverse la section d’aire dS pendant dt est contenue dans le
volume vdtdS cos 6 = ¥.dSdt, c’est a dire :
6q = nqu.dSdt = j.dSdt

L’intensité du courant & travers une surface de vecteur normal d.S a pour expres-
sion :

61 = j.dS

Pour en déduire la situation la plus générale, c’est a dire la charge traversant une
surface quelconque, il ne reste plus qu’a sommer les intensités infinitésimales sur

I’ensemble de la surface.
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L’intensité du courant électrique s’exprime comme le flux du vecteur densité de
courant électrique a travers une surface orientée :
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Remarque : de cette derniére expression, on déduit aisément que le vecteur courant
s’exprime en A - m~2 dans le systéme international d’unités.

1.3 Bilan de charge

Exemple a une dimension
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Considérons le volume fixe situé entre les abscisses = et  + dx; a 'instant ¢, ce
volume infinitésimal contient une charge élémentaire dq = p(x,t)Sdz.

La charge d’un systéme isolé se conservant (pas d’apparition spontanée de
charges), ’évolution de la charge dans ce volume ne peut étre due qu’aux flux

de charges a travers les surfaces, ce qui s’écrit :
"charge en (¢t + dt)"="charge en t" + "apports pendant d¢" - "pertes pendant d¢"

— charge en (t +dt) : dq(t + dt) = p(x,t + dt)Sdx

— charge en t : §q(t) = p(x,t)Sdx
— apports pendant dt (liés au flux entrant) : j,(z,¢)Sdt

— pertes pendant d¢ (liées au flux sortant) : j,(z + da,t)Sdt

Ce qui donne, mathématiquement :
p(z,t +dt)Sdx = p(x,t)Sdx + ju(x,t)Sdt — j(x 4 do,t)Sdt

[pla.t +dt) - p(z,t)] de = [ja(e,1) - juole + da, 1)) dt

dp R
o 0,
ot Or

La charge peut varier au cours du temps dans I’élément de volume si les apports

Equation locale de conservation de la charge & 1D :




ne compensent pas les pertes, dans le cas présent si la composante selon x du
vecteur courant n’est pas identique en = et en x + dx.

La nullité du second membre est caractéristique d’'une grandeur qui se conserve.

Généralisation

Dans le cas général, il faut prendre en compte la variation possible des composantes
O 0dy Ojz.
ox’ Oy’ 0z’

on en déduit ’équation locale de conservation de la charge :

du vecteur densité de courant selon les trois directions de I’espace (

ap

o +divj =0

Cette loi est une loi universelle.

1.4 Expression intégrale de conservation de la charge

Considérons un volume V fixe, délimité par une surface 3 fermée et orientée vers
I’extérieur et contenant une charge (). La variation de la charge au cours du temps
est associée au flux du vecteur densité de courant a travers la surface :
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Justification :

0.2 [~ 2520,

1.5 Reégime stationnaire
Ligne de courant, tube de courant

— Les lignes de courant sont les lignes tangentes au vecteur densité de courant
électrique en tout point et orientées par ce vecteur.
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— L’ensemble des lignes de courant s’appuyant sur un contour C engendre une
surface appelée tube de courant.

tube de courant

ligne de courant

— contour C
J
N ————————————
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Caractére conservatif du vecteur courant

En régime permanent, les grandeurs ne dépendent pas explicitement du temps, en

particulier o _ 0.

ot

En régime permanent, la loi de conservation de la charge prend alors la forme

simplifiée :
divi=0 < #}.ﬁ: 0

En régime permanent le vecteur courant est a flux conservatif.
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— Schéma de gauche : #f.dgz 0 = //fl.dgl = //jQ.dgg
— Schéma de droite : #]dg = = d1+i9+i3+i4=0

La loi des noeuds ne traduit rien d’autre que le caractére conservatif du vecteur
courant en régime permanent.



2 Conducteur ohmique

2.1 Loi d’Ohm locale

A Tl’échelle macroscopique, un composant électrique vérifie la loi d’Ohm s'il
existe une relation de proportionnalité entre la tension & ses bornes et l'intensité
du courant qui le traverse, mathématique U = RI.

La loi d’Ohm locale (échelle mésoscopique) impose une relation de proportion-
nalité entre le vecteur courant et le champ électrique :

j=0E
o, appelée conductivité électrique, s’exprime en S - m~! = Q1. m~! (unités SI).

Un milieu dans lequel s’applique cette loi porte le nom de « conducteur ohmique ».

Remarques :

— Cette loi est une loi phénoménologique, déduite de ’expérience, qui n’a pas
un caractére universel. Elle traduit I'idée, qu’en présence d’un champ électrique
extérieur, les porteurs de charge se mettent en mouvement de concert pour créer
un vecteur courant résultant non nul (Cf. schéma ci-dessous).
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absence de champ électrique présence d’un champ électrique

— Comme toute loi phénoménologique, elle s’applique dans un cadre limité. Dans
le cas présent : milieu homogéne et isotrope, champ électrique « pas trop » intense
et variant « lentement » dans le temps.

— On peut retenir oy ~ 6 x 107 S-m™h

2.2 Modéle de Drude

En 1900, Paul Drude propose un modéle classique ayant pour but d’expliquer la
loi d’Ohm locale.

Dans ce modéle :

— Les ions métalliques sont fixes et constituent le réseau cristallin,

— La conduction est due aux seuls électrons de conduction (charge —e, masse
me)v

— Les électrons de conduction subissent des chocs sur les ions métalliques. Ces

chocs sont supposés instantanés, aprés chaque choc, la direction et la norme de la
vitesse d’un électron sont aléatoires.

— Entre deux chocs, un électron n’est soumis qu’a ’action du champ électrique
imposé E.

On considére un électron quelconque pour lequel on applique la deuxiéme loi de

Newton entre deux collisions successives numérotées 7 et ¢ + 1 :

dv o, eF

Mme— =—eb = U =7To; — — (tix1 — 1)

dt T me
avec U, ; la vitesse juste aprés le choc ¢ et ¥; la vitesse juste avant le choc ¢ + 1.

La vitesse moyenne des électrons est calculée en effectuant une moyenne sur ’en-
semble des électrons de conduction : .
. . el el
(Ui) = (Vo) —

— (tip1 —ti)=——T1
Me Me
avec 7 la durée moyenne entre deux chocs pour un électron.

2
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On en déduit j = —ne (¥;) = E. on retrouve la loi d’Ohm locale et par
identification :
ne’r
g =
Me
Remarque :

Dans les métaux, la vitesse des électrons due a ’agitation thermique est de I'ordre
de vo = 10® cm/s; connaissant 7 la durée moyenne entre deux collisions déduite
du modéle de Drude, on en déduit un libre parcours moyen I, = vp7 ~ 30 nm
environ 100 fois plus grande que la distance entre les ions du réseau .

Ce sont en reéalité les imperfections du réseau (impuretés, vibrations du réseau)
qui sont responsables des chocs et non le réseau lui-méme.

2.3 Application : résistance d’un conducteur cylindrique
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On considére le cas d’'un conducteur ohmique cylindrique de longueur L et de
section S soumis & une tension U et parcouru uniformément par un courant d’in-
tensité 1.

— Le vecteur courant est lié & I'intensité par la relation 7 =

— Pour un milieu ohmique, la loi d’Ohm locale s’écrit : j = oF
— Enfin, pour un champ électrique uniforme, £ = U/L

On combine alors ces expressions pour déterminer la résistance de ce trongon :

j 1 L L
U=ExL=xL=—75xL = U=—7F7xI = |R=—
o oS oS oS

— La résistance est proportionnelle a la longueur (association des résistances en

série)

— la résistance est inversement proportionnelle a la section (le nombre de porteurs
de charge est proportionnel a la section)

— la résistance décroit logiquement avec la conductivité du matériau.

2.4 Aspect énergétique : puissance dissipée par effet Joule

La puissance volumique p, regue par un conducteur ohmique et dissipée par effet
Joule a pour expression :

-

po=j.E=0E=j"/o

Démonstration :
— Premiére méthode :

On considére le conducteur ohmique cylindrique qui recoit une puissance électrique
totale :

P=UxI=FLxjS=jExV avec V=8x1L

P
On en déduit le rapport de la puissance sur le volume : p, = v jxFE

— Seconde méthode :

On considére le cas d’un conducteur ohmique quelconque; pour simplifier, on
considére un seul type de porteurs de charge (densité particulaire n, charge ¢,
vitesse 7)

Une charge électrique subit la force de Lorentz : f =q (E +UA é) et regoit une
puissance :
p:q<ﬁ+17/\§> .U:qE_j.U

Avec n porteurs par unité de volume, le conducteur recoit une puissance par unité
de volume :
Py =np=nqu.E=j.FE

Capacités exigibles :

— Conservation de la charge :

Passer d’une description microscopique (porteurs de charge, vitesse des porteurs)
aux grandeurs mésoscopiques p et j

Décrire les différents types de porteurs de charge. Faire la distinction entre charges
mobiles et charges fixes.

Ecrire Pintensité comme le flux du vecteur densité de courant électrique a travers
une surface orientée.

Etablir I’équation locale traduisant la conservation de la charge électrique en co-
ordonnées cartésiennes a une dimension.

Citer I’équation locale dans le cas tridimensionnel et en interpréter chacun des
termes.

Définir une ligne de courant et un tube de courant.

En régime stationnaire, exploiter le caractére conservatif du vecteur densité de
courant électrique. Relier cette propriété a la loi des nceuds usuelle de 1’électroci-
nétique.

— Conducteur ohmique :

Relier le vecteur densité de courant au champ électrique dans un conducteur
ohmique. Citer 'ordre de grandeur de la conductivité du cuivre.

En régime stationnaire, établir une expression de la conductivité électrique a I’aide
d’un modéle microscopique (Modéle de Drude).

Etablir 'expression de la résistance d’un céble cylindrique parcouru uniformément
par un courant paralléle & son axe.

Etablir 'expression de la puissance volumique recue par un conducteur ohmique.
Interpréter 'effet Joule.

Approche documentaire : décrire la conductivité des semi-conducteurs, les
types de porteurs, 'influence du dopage.
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