
Lycée Naval, Spé 2.
Phénomènes de transport. 01. Transport de charge.

Transport de charge - conduction électrique

1 Conservation de la charge électrique

La charge totale d’un système isolé se conserve au cours du temps.

1.1 Densité de charge et vecteur courant

Densité volumique de charge électrique

La description microscopique correspond à la donnée de chacune des particules
chargées ; à l’échelle mésoscopique, on définit des grandeurs moyennées sur un
volume intermédiaire contenant un très grand nombre de particules tout en restant
suffisamment petit par rapport à la taille totale du système afin de pouvoir étudier
l’évolution de ces grandeurs à l’échelle macroscopique.
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Considérons un élément de volume dτ contenant une charge δq, on définit la
densité volumique de charge électrique :

ρ =
δq

dτ
en C ·m−3

Vecteur densité de courant électrique

v q1
v1

v2
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un type de porteurs plusieurs types de porteurs

q

Dans un premier temps, on considère un seul type de porteurs de charge caractérisé
par une charge électrique q, une densité particulaire n (nombre de particules par

unité de volume) et une vitesse d’ensemble ~v (vitesse moyenne de ces porteurs
de charge).

On définit le vecteur densité de courant électrique ~j tel que :
~j = nq~v

Généralisation : on considère maintenant N types de porteurs de charge : charge
qi, densité particulaire ni, vitesse d’ensemble ~vi, le vecteur courant a alors pour
expression :

~j =
N∑
i=1

niqi~vi

Exemple du sodium métallique

Le sodium métallique est constitué d’ions sodium Na+ fixes aux nœuds du réseau
et d’électrons de conduction e−, libres de se déplacer au sein du volume.

→ densités particulaires : la densité particulaire des ions est donnée par :

nions =
µ

M/NA
= 2, 65× 1022 part./cm3

avec µ la masse volumique du cristal et M la masse molaire atomique du sodium.

Chaque élément sodium fournissant un électron de conduction, ne− = nions = n.

→ densité volumique de charge : ρ = n× e+ n× (−e) = 0.
La densité volumique de charge est nulle en accord avec la neutralité du cristal.

→ vecteur courant :
~j = nionse~vions︸︷︷︸

=~0

+ne−(−e)~ve− = −ne~ve−

Il est donc possible d’avoir simultanément une densité volumique de charge nulle
et un vecteur courant non nul.

1.2 Intensité du courant électrique

Exemple à une dimension

Considérons pour simplifier un seul type de porteurs de charge (charge individuelle
q, densité particulaire n). On considère que les porteurs de charge se déplacent
tous à la vitesse ~v (en réalité la vitesse moyenne).

On peut alors aisément déterminer la charge qui traverse la section Σ en une durée
dt :
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δq = nqvdtdS = jdSdt

v

vdt
section Σ

aire dS

volume du
cylindrevdtdSnqq=δ

pendant dt, la charge qui traverse la section d’aire dS
a pour expression

L’intensité du courant électrique est, par définition, la charge qui traverse une sec-
tion de conducteur par unité de temps. Dans le cas présent, l’intensité élémentaire
associée à la charge traversant dS s’écrit :

δI =
δq

dt
=
nqvdtdS

dt
= j × dS

Généralisation

Dans le cas général, il faut tenir compte de l’orientation relative du vecteur courant
et de la normale à la surface.

dS

v

θdS cos

θ

vdt

La charge δq qui traverse la section d’aire dS pendant dt est contenue dans le
volume vdtdS cos θ = ~v.d~Sdt, c’est à dire :

δq = nq~v.d~Sdt = ~j.d~Sdt

L’intensité du courant à travers une surface de vecteur normal d~S a pour expres-
sion :

δI = ~j.d~S

Pour en déduire la situation la plus générale, c’est à dire la charge traversant une
surface quelconque, il ne reste plus qu’à sommer les intensités infinitésimales sur
l’ensemble de la surface.

dS

j

Σ

L’intensité du courant électrique s’exprime comme le flux du vecteur densité de
courant électrique à travers une surface orientée :

I =

∫∫
Σ

~j.d~S

Remarque : de cette dernière expression, on déduit aisément que le vecteur courant
s’exprime en A ·m−2 dans le système international d’unités.

1.3 Bilan de charge

Exemple à une dimension

dx

x x+dx

j(x+dx)j(x)
section Σ

aire S

Considérons le volume fixe situé entre les abscisses x et x + dx ; à l’instant t, ce
volume infinitésimal contient une charge élémentaire δq = ρ(x, t)Sdx.

La charge d’un système isolé se conservant (pas d’apparition spontanée de
charges), l’évolution de la charge dans ce volume ne peut être due qu’aux flux
de charges à travers les surfaces, ce qui s’écrit :

"charge en (t+ dt)"="charge en t" + "apports pendant dt" - "pertes pendant dt"

→ charge en (t+ dt) : δq(t+ dt) = ρ(x, t+ dt)Sdx

→ charge en t : δq(t) = ρ(x, t)Sdx

→ apports pendant dt (liés au flux entrant) : jx(x, t)Sdt

→ pertes pendant dt (liées au flux sortant) : jx(x+ dx, t)Sdt

Ce qui donne, mathématiquement :
ρ(x, t+ dt)Sdx = ρ(x, t)Sdx+ jx(x, t)Sdt− jx(x+ dx, t)Sdt

[ρ(x, t+ dt)− ρ(x, t)] dx = [jx(x, t)− jx(x+ dx, t)] dt

∂ρ

∂t
dt× dx = −∂jx

∂x
dx× dt

Équation locale de conservation de la charge à 1D :
∂ρ

∂t
+
∂jx
∂x

= 0

La charge peut varier au cours du temps dans l’élément de volume si les apports
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ne compensent pas les pertes, dans le cas présent si la composante selon x du
vecteur courant n’est pas identique en x et en x+ dx.

La nullité du second membre est caractéristique d’une grandeur qui se conserve.

Généralisation

Dans le cas général, il faut prendre en compte la variation possible des composantes

du vecteur densité de courant selon les trois directions de l’espace (
∂jx
∂x

,
∂jy
∂y

,
∂jz
∂z

) ;

on en déduit l’équation locale de conservation de la charge :

∂ρ

∂t
+ div~j = 0

Cette loi est une loi universelle.

1.4 Expression intégrale de conservation de la charge

Considérons un volume V fixe, délimité par une surface Σ fermée et orientée vers
l’extérieur et contenant une charge Q. La variation de la charge au cours du temps
est associée au flux du vecteur densité de courant à travers la surface :

dQ(t)

dt
= −

∫����∫
Σ

~j.d~S

dS

j j

j

V fixesurface

Σ
Q(t)

Justification :
dQ(t)

dt
=

d

dt

∫∫∫
V
ρ(P, t)dvp =

∫∫∫
V

∂ρ(P, t)

∂t
dvp = −

∫∫∫
V
div~j dvp = −

∫����∫ ~j.d~S

1.5 Régime stationnaire

Ligne de courant, tube de courant

→ Les lignes de courant sont les lignes tangentes au vecteur densité de courant
électrique en tout point et orientées par ce vecteur.

→ L’ensemble des lignes de courant s’appuyant sur un contour C engendre une
surface appelée tube de courant.

j

j

ligne de courant

contour C

tube de courant 

Caractère conservatif du vecteur courant

En régime permanent, les grandeurs ne dépendent pas explicitement du temps, en

particulier
∂ρ

∂t
= 0.

En régime permanent, la loi de conservation de la charge prend alors la forme
simplifiée :

div~j = 0 ⇔
∫����∫ ~j.d~S = 0

En régime permanent le vecteur courant est à flux conservatif.

Conséquences
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→ Schéma de gauche :
∫����∫ ~j.d~S = 0 ⇒

∫∫
~j1.d~S1 =

∫∫
~j2.d~S2

→ Schéma de droite :
∫����∫ ~j.d~S = 0 ⇒ i1 + i2 + i3 + i4 = 0

La loi des nœuds ne traduit rien d’autre que le caractère conservatif du vecteur
courant en régime permanent.
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2 Conducteur ohmique

2.1 Loi d’Ohm locale

À l’échelle macroscopique, un composant électrique vérifie la loi d’Ohm s’il
existe une relation de proportionnalité entre la tension à ses bornes et l’intensité
du courant qui le traverse, mathématique U = RI.

La loi d’Ohm locale (échelle mésoscopique) impose une relation de proportion-
nalité entre le vecteur courant et le champ électrique :

~j = σ ~E
σ, appelée conductivité électrique, s’exprime en S ·m−1 = Ω−1 ·m−1 (unités SI).

Un milieu dans lequel s’applique cette loi porte le nom de « conducteur ohmique ».

Remarques :
→ Cette loi est une loi phénoménologique, déduite de l’expérience, qui n’a pas
un caractère universel. Elle traduit l’idée, qu’en présence d’un champ électrique
extérieur, les porteurs de charge se mettent en mouvement de concert pour créer
un vecteur courant résultant non nul (Cf. schéma ci-dessous).

E
q<0

q>0

absence de champ électrique présence d’un champ électrique

j

→ Comme toute loi phénoménologique, elle s’applique dans un cadre limité. Dans
le cas présent : milieu homogène et isotrope, champ électrique « pas trop » intense
et variant « lentement » dans le temps.

→ On peut retenir σCu ≈ 6× 107 S ·m−1.

2.2 Modèle de Drude

En 1900, Paul Drude propose un modèle classique ayant pour but d’expliquer la
loi d’Ohm locale.
Dans ce modèle :
→ Les ions métalliques sont fixes et constituent le réseau cristallin,
→ La conduction est due aux seuls électrons de conduction (charge −e, masse
me),
→ Les électrons de conduction subissent des chocs sur les ions métalliques. Ces

chocs sont supposés instantanés, après chaque choc, la direction et la norme de la
vitesse d’un électron sont aléatoires.
→ Entre deux chocs, un électron n’est soumis qu’à l’action du champ électrique
imposé ~E.

On considère un électron quelconque pour lequel on applique la deuxième loi de
Newton entre deux collisions successives numérotées i et i+ 1 :

me
d~v

dt
= −e ~E ⇒ ~vi = ~vo,i −

e ~E

me
(ti+1 − ti)

avec ~vo,i la vitesse juste après le choc i et ~vi la vitesse juste avant le choc i+ 1.

La vitesse moyenne des électrons est calculée en effectuant une moyenne sur l’en-
semble des électrons de conduction :

〈~vi〉 = 〈~vo,i〉 −
e ~E

me
〈ti+1 − ti〉 = −e

~E

me
τ

avec τ la durée moyenne entre deux chocs pour un électron.

On en déduit ~j = −ne 〈~vi〉 =
ne2τ

m
~E, on retrouve la loi d’Ohm locale et par

identification :

σ =
ne2τ

me

Remarque :
Dans les métaux, la vitesse des électrons due à l’agitation thermique est de l’ordre
de v0 = 108 cm/s ; connaissant τ la durée moyenne entre deux collisions déduite
du modèle de Drude, on en déduit un libre parcours moyen lc = v0τ ' 30 nm
environ 100 fois plus grande que la distance entre les ions du réseau .
Ce sont en réalité les imperfections du réseau (impuretés, vibrations du réseau)
qui sont responsables des chocs et non le réseau lui-même.

2.3 Application : résistance d’un conducteur cylindrique

E

Ej = σ

ux

section

S

tension U

longueur L
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On considère le cas d’un conducteur ohmique cylindrique de longueur L et de
section S soumis à une tension U et parcouru uniformément par un courant d’in-
tensité I.

→ Le vecteur courant est lié à l’intensité par la relation ~j =
I

S
~ux

→ Pour un milieu ohmique, la loi d’Ohm locale s’écrit : ~j = σ ~E
→ Enfin, pour un champ électrique uniforme, E = U/L

On combine alors ces expressions pour déterminer la résistance de ce tronçon :

U = E × L =
j

σ
× L =

I

σS
× L ⇒ U =

L

σS
× I ⇒ R =

L

σS

→ La résistance est proportionnelle à la longueur (association des résistances en
série)
→ la résistance est inversement proportionnelle à la section (le nombre de porteurs
de charge est proportionnel à la section)
→ la résistance décroît logiquement avec la conductivité du matériau.

2.4 Aspect énergétique : puissance dissipée par effet Joule

La puissance volumique pv reçue par un conducteur ohmique et dissipée par effet
Joule a pour expression :

pv = ~j. ~E = σ ~E2 = ~j2/σ

Démonstration :

→ Première méthode :

On considère le conducteur ohmique cylindrique qui reçoit une puissance électrique
totale :

P = U × I = EL× jS = jE × V avec V = S × L

On en déduit le rapport de la puissance sur le volume : pv =
P

V
= j × E

→ Seconde méthode :

On considère le cas d’un conducteur ohmique quelconque ; pour simplifier, on
considère un seul type de porteurs de charge (densité particulaire n, charge q,
vitesse ~v)

Une charge électrique subit la force de Lorentz : ~f = q
(
~E + ~v ∧ ~B

)
et reçoit une

puissance :
p = q

(
~E + ~v ∧ ~B

)
.~v = q ~E.~v

Avec n porteurs par unité de volume, le conducteur reçoit une puissance par unité
de volume :

pv = np = nq~v. ~E = ~j. ~E

Capacités exigibles :

→ Conservation de la charge :
Passer d’une description microscopique (porteurs de charge, vitesse des porteurs)
aux grandeurs mésoscopiques ρ et ~j
Décrire les différents types de porteurs de charge. Faire la distinction entre charges
mobiles et charges fixes.
Écrire l’intensité comme le flux du vecteur densité de courant électrique à travers
une surface orientée.
Établir l’équation locale traduisant la conservation de la charge électrique en co-
ordonnées cartésiennes à une dimension.
Citer l’équation locale dans le cas tridimensionnel et en interpréter chacun des
termes.
Définir une ligne de courant et un tube de courant.
En régime stationnaire, exploiter le caractère conservatif du vecteur densité de
courant électrique. Relier cette propriété à la loi des nœuds usuelle de l’électroci-
nétique.

→ Conducteur ohmique :
Relier le vecteur densité de courant au champ électrique dans un conducteur
ohmique. Citer l’ordre de grandeur de la conductivité du cuivre.
En régime stationnaire, établir une expression de la conductivité électrique à l’aide
d’un modèle microscopique (Modèle de Drude).
Établir l’expression de la résistance d’un câble cylindrique parcouru uniformément
par un courant parallèle à son axe.
Établir l’expression de la puissance volumique reçue par un conducteur ohmique.
Interpréter l’effet Joule.
Approche documentaire : décrire la conductivité des semi-conducteurs, les
types de porteurs, l’influence du dopage.
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