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Transfert thermique par conduction

1 Formulation infinitésimale des principes de la ther-
modynamique

1.1 Premier principe de la thermodynamique

Énoncé vu en première année

→ L’énergie interne est une grandeur extensive : U1+2 = U1 + U2,
→ L’énergie interne est une fonction d’état : à l’équilibre thermodynamique,
elle ne dépend que d’un petit nombre de variables d’état.
→ Pour un système fermé, évoluant entre deux états d’équilibre, le bilan d’énergie
pour le système s’écrit :

∆ (U + Em) = W +Q

Cas d’une transformation infinitésimale

Dans le cas d’une transformation infinitésimale, c’est à dire entre deux états d’équi-
libre très voisins, le dernier point se réécrit :

d(U + Em) = δW + δQ

Significations des notations :
→ ∆ symbolise une différence finie, par exemple ∆U = Uf − Ui, « d » est son
équivalent pour les différences infinitésimales, dU signifie que l’on évalue la diffé-
rence de U entre deux états d’équilibre « très voisins ».
Les écritures ��dW ou ��dQ sont donc prohibées ; en effet on ne peut évaluer une
différence de travail entre l’état final et l’état initial, le travail étant un transfert
d’énergie ayant lieu lors d’une évolution et non une grandeur associée à l’état
initial ou final.

→ Le symbole « δ » fait lui simplement référence à une « petite » quantité, ainsi
δW représente un travail infinitésimal.

1.2 Deuxième principe de la thermodynamique

Énoncé vu en première année

→ L’entropie est une grandeur extensive : S1+2 = S1 + S2,
→ L’entropie est une fonction d’état : à l’équilibre thermodynamique, elle ne

dépend que d’un petit nombre de variables d’état.
→ Pour un système fermé, évoluant entre deux états d’équilibre et lors d’une
évolution monotherme :

∆S = Se + Sc avec Se =
Q

T0
et Sc ≥ 0 (= 0 si réversible)

Cas d’une transformation infinitésimale

Dans le cas d’une transformation infinitésimale, c’est à dire entre deux états d’équi-
libre infiniment voisins, le dernier point se réécrit :

dS = δSe + δSc avec δSe =
δQ

T0
et δSc ≥ 0

2 Équation de la diffusion thermique

2.1 Les différents modes de transfert thermique

Lorsque deux corps à des températures différentes sont mis en contact thermique,
on observe un transfert thermique du corps le plus chaud vers le corps le plus froid
qui tend à homogénéiser les températures.

On distingue trois types de transfert thermique : la conduction, la convection
et le rayonnement.

La conduction (ou diffusion) thermique

La conduction (ou diffusion) thermique correspond à un transfert d’énergie (sous
forme thermique) sans mouvement macroscopique de matière.

Exemple : une cuillère en inox plongée dans de l’eau chaude voit son extrémité à
l’air libre s’échauffer rapidement. On privilégie une cuillère en bois pour ne pas se
brûler. La section et la longueur de l’objet jouent également un rôle important.

Explication : l’agitation microscopique dans le cristal croît avec la température,
cette agitation se propage de proche en proche au sein du cristal (via les électrons
de conduction dans le cas du métal).

La convection thermique

La convection thermique correspond à un transfert thermique par mouvement
macroscopique du milieu, elle n’est possible que dans un fluide.
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Exemple : l’air au voisinage d’un radiateur s’échauffe, cet air plus chaud et moins
dense s’élève provoquant un transfert thermique.

Le rayonnement

Le rayonnement correspond à un transfert thermique via un rayonnement élec-
tromagnétique. Contrairement aux deux autres, ce mode de transfert existe même
dans le vide.

Exemple : le Soleil émet un rayonnement électromagnétique qui transporte de
l’énergie (Cf. théorème de Poynting). Plus généralement tout corps chaud émet
un rayonnement.

Dans toute la suite, on s’intéressera essentiellement au phénomène de conduction
thermique.

2.2 Vecteur densité de courant thermique

Soit une surface élémentaire de vecteur surface d~S, et δQ le transfert thermique
qui traverse cette surface pendant dt. On appelle, vecteur densité volumique
de courant thermique, noté ~jQ, le vecteur défini par :

δQ = ~jQ.d~Sdt

dS

j

Σ

Q

Dans le système international d’unités, le vecteur courant s’exprime en W ·m−2,
il représente le transfert thermique qui traverse une section par unité de surface
et de temps.

δΦ =
δQ

dt
= ~jQ.d~S représente le flux thermique élémentaire à travers d~S ; par

intégration, on obtient le flux thermique Φ, flux du vecteur ~jQ à travers la
surface orientée Σ :

Φ =

∫∫
Σ

~jQ.d~S

2.3 Loi phénoménologique de Fourier

La loi de Fourier rend compte du phénomène de diffusion thermique en reliant
le vecteur densité de courant thermique au gradient de température selon :

~jQ = −λ×
−−→
gradT

λ est la conductivité thermique, elle s’exprime en W ·m−1 ·K−1.

Remarques :

? Cette loi est une loi phénoménologique comme la loi d’Ohm locale.

? le coefficient λ est toujours positif, le signe « - » dans la formule assure que la
diffusion thermique s’effectue du « chaud vers le froid » (vecteur ~jQ orienté vers
les basses températures).

? La conductivité thermique dépend du matériau et (un peu) de la température.

Matériau air eau béton acier polystyrène
λ (W ·m−1 ·K−1) 0,026 0,6 ≈ 1 16 0,04

2.4 Bilan d’énergie

Modèle unidirectionnel (géométrie cartésienne)

? On considère un matériau de masse volumique ρ et de capacité thermique
massique c, à l’intérieur duquel peuvent exister des sources internes d’énergie
(exemples : radioactivité, effet Joule), on note pth la puissance volumique appor-
tée par ces processus.

On applique, entre t et t+ dt, le premier principe à un élément de longueur dx et
de section S.

dU = δW + δQ

pth

j(x+dx)j(x)
section Σ

aire S

x x+dx

→ δW = 0 (approximation du volume constant pour une phase condensée)

→ dU = δm× c× dT = (ρSdx)× c× dT ≈ ρSdx× c× ∂T

∂t
dt (à x fixé)

→ δQ = δQflux + δQsource interne

? δQflux = Φ(x, t)dt− Φ(x+ dx, t)dt = −∂Φ

∂x
dxdt =︸︷︷︸

S uniforme

−
∂jQ(x, t)

∂x
Sdxdt

? δQsource interne = pthdxSdt
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En géométrie cartésienne, pour un problème ne dépendant que d’une variable
d’espace, le bilan thermique conduit à l’équation locale :

ρc
∂T

∂t
+
∂jQ
∂x

= pth

Modèle unidirectionnel (géométrie cylindrique)

On considère maintenant un dispositif pour lequel le champ de température admet
une invariance par translation et rotation autour d’un axe Oz. La température
T (r, t) ne dépend que du temps et de la variable r des coordonnées cylindriques.

l

r

r+dr

z

Dans une telle configuration le vecteur densité de courant thermique est radial :
~jQ = −λ

−−→
gradT ⇒ ~jQ = −λ∂T (r, t)

∂r
~ur

On réalise le bilan d’énergie pour un volume infinitésimal compris entre deux
cylindres coaxiaux de rayon r et r + dr et de longueur l.

→ dU = ρ× 2πrdrl × c× ∂T

∂t
dt

→ δQ = δQflux + δQsource interne

? δQflux = [Φ(r, t)− Φ(r + dr, t)] dt = −∂Φ(r, t)

∂r
drdt avec Φ(r, t) = 2πrljQ(r, t)

? δQsource interne = pth × 2πrdrl × dt

En géométrie cylindrique, pour un problème ne dépendant que d’une variable
d’espace, le bilan thermique conduit à l’équation locale :

ρc
∂T

∂t
+

1

r

∂

∂r
[rjQ(r, t)] = pth

Modèle unidirectionnel (géométrie sphérique)

On considère maintenant un dispositif pour lequel le champ de température est
à symétrie sphérique. La température T (r, t) ne dépend que du temps et de la
variable r des coordonnées sphériques.

Dans une telle configuration le vecteur densité de courant thermique est radial :
~jQ = −λ

−−→
gradT ⇒ ~jQ = −λ∂T (r, t)

∂r
~ur

On réalise le bilan d’énergie pour un volume infinitésimal compris entre deux
sphères concentriques de rayon r et r + dr.

→ dU = ρ× 4πr2dr × c× ∂T

∂t
dt

→ δQ = δQflux + δQsource interne

? δQflux = [Φ(r, t)− Φ(r + dr, t)] dt = −∂Φ(r, t)

∂r
drdt avec Φ(r, t) = 4πr2jQ(r, t)

? δQsource interne = pth × 4πr2dr × dt

En géométrie sphérique, pour un problème ne dépendant que d’une variable d’es-
pace, le bilan thermique conduit à l’équation locale :

ρc
∂T

∂t
+

1

r2

∂

∂r

[
r2jQ(r, t)

]
= pth

Généralisation

Le premier principe de la thermodynamique se traduit par la relation locale :

ρc
∂T

∂t
+ div~jQ = pth

Remarque : cette équation est à rapprocher de l’équation de conservation de la
charge. La différence vient du second membre non nul avec la présence d’un terme
source.
Pour un système à volume constant, cette loi, simple reformulation du premier
principe, est universelle.

2.5 Équation de la diffusion thermique

Expression en présence de sources internes

En substituant la loi de Fourier dans le bilan d’énergie, on obtient :

ρc
∂T

∂t
+ div

(
−λ
−−→
gradT

)
= pth donc ρc

∂T

∂t
= λ∆T + pth

La température vérifie l’équation de la diffusion thermique :

ρc
∂T

∂t
= λ∆T + pth ou ρc

∂T

∂t
= λ

∂2T

∂x2
+ pth 1D cartésienne
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Expression sans terme source

En l’absence de terme source, la température vérifie l’équation de la diffusion
thermique :

∂T

∂t
= κ∆T ou

∂T

∂t
= κ

∂2T

∂x2
1D cartésienne

avec κ = λ/(ρc), appelée diffusivité thermique (m2/s).

Commentaires

L’équation de la diffusion thermique est une équation aux dérivées partielles dont
la résolution est complexe dans le cas le plus général. On peut cependant faire
plusieurs remarques :

→ Analyse dimensionnelle : pour un problème donné, soit L la longueur carac-
téristique et τ la durée d’évolution du phénomène de diffusion thermique. D’une
simple analyse dimensionnelle, on déduit, en ordre de grandeur :

T

τ
∝ κ T

L2
⇔ τ ∝ L2

κ

Pour atteindre des régions dix fois plus éloignées, un mobile se déplaçant à la
vitesse v met 10 fois plus de temps, le phénomène de diffusion met, quand à lui,
cent fois plus de temps !
Ceci explique que, dans les gaz ou les liquides, les phénomènes de diffusion soient
souvent masqués par les effets convectifs.

→ Irréversibilité : l’inversion du temps (t → −t) ne laisse par l’équation inva-
riante : cela traduit l’irréversibilité physique du phénomène de diffusion.

→ Linéarité : l’équation de diffusion thermique est linéaire à coefficients réels, la
représentation complexe peut donc être exploitée dans la recherche de solution.

2.6 Conditions aux limites

x0

Textfluide extérieur

x0

T(x0 ,t)

x0

Φ
ο

flux thermique

milieu

imposé

solide 1 solide 2

milieu

paroi

(1)
(2)

(3)

L’équation de diffusion dépend du temps et de variables spatiales. Pour la ré-
soudre, il faut disposer de conditions initiales (par exemple : « en t = 0, la tempé-
rature est de 295 K ») mais aussi de conditions aux limites (variables spatiales).

Cas d’un flux imposé (1)

? Dans le cas d’un problème unidimensionnel, si on impose un flux Φ0 à travers
une section S située à l’extrémité x0 du matériau :

Φ0 = jQ(x0, t)S = −Sλ
(
∂T

∂x

)
(x0,t)

En particulier, si la paroi est calorifugée :
(
∂T

∂x

)
(x0,t)

= 0.

Contact entre deux solides (2)

? Dans le cas d’un contact entre deux solides, il ne peut pas y avoir accumulation
d’énergie à cette interface, l’égalité des flux thermiques s’écrit :

−Sλ1

(
∂T1

∂x

)
(x−0 ,t)

= −Sλ2

(
∂T2

∂x

)
(x+0 ,t)

Un contact « parfait » suppose, en outre, l’égalité des températures sur la surface
de contact :

T1(x−0 , t) = T2(x+
0 , t)

Contact avec un fluide (3)

? Les échanges thermiques entre le fluide extérieur (Text) et la surface du matériau
(T ) sont souvent modélisés par la loi de Newton qui donne le flux sortant à
travers une surface unité : jQ = h [T − Text].

2.7 Exercice d’application : ailette de refroidissement

On s’intéresse à la température au sein d’une ailette de refroidissement (rayon R)
et on suppose que la température ne dépend que de x ; au niveau de la surface
latérale, les échanges thermiques sont régis par la loi de Newton, la puissance
dissipée par un élément de la paroi latérale valant dP ′ = h(T (x)− Te)dSlat.

ux
x x+dx

j (x)
Q

j
Q
(x+dx)

Te

Te

To
O

L

On applique le premier principe à un élément de l’ailette situé entre x et x+ dx.
Il faut cependant prendre garde à ne pas oublier le transfert à travers la surface
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latérale dans le bilan.

dU = ρSdxc
∂T

∂t
dt = jQ(x, t)Sdt− jQ(x+ dx, t)Sdt− h (T (x, t)− Te) 2πRdxdt

ρc
∂T

∂t
= −

∂jQ
∂x
− 2h

R
(T (x, t)− Te)

En utilisant la loi de Fourier jQ(x, t) = −λ∂T
∂x

, on en déduit :

ρc
∂T

∂t
= λ

∂2T

∂x2
− 2h

R
(T (x, t)− Te)

En supposant le régime stationnaire établi, l’équation se simplifie selon :
d2T (x)

dx2
− T (x)

a2
= −Te

a2
avec a2 =

λR

2h

La solution générale de cette équation s’écrit :
T (x) = Te +A exp (−x/a) +B exp (x/a) avec T (0) = To

Pour une tige de longueur infinie (en pratique L� a), B est nécessairement nul ;
la condition aux limites impose finalement le profil de température au sein de
l’ailette :

T (x) = Te + (To − Te) exp (−x/a)

On montre que l’ailette dissipe une puissance thermique P =
λπR2 (To − Te)

a
.

3 Résistance thermique

3.1 Exemple d’un barreau calorifugé

On se place en régime permanent et en l’absence de sources d’énergie in-
ternes. On considère le cas d’un barreau calorifugé latéralement dont les ex-
trémités sont maintenues aux températures T1 et T2 (T1 > T2).

T
1

T
2

O

L

x

section S

? En régime permanent, l’équation de la diffusion thermique prend la forme sim-
plifiée :

d2T (x)

dx2
= 0 donc T (x) = Ax+B

Avec T (0) = T1 et T (L) = T2, le profil de température s’écrit :

T (x) = T1 +
T2 − T1

L
× x

? On détermine alors le flux thermique qui traverse la tige :

Φ = ~jQ.S~ux = jQS = −λdT

dx
S donc Φ = λ

T1 − T2

L
S

On remarque que le flux est indépendant de l’abscisse ; le flux entrant en x doit
nécessairement être évacué en x + dx, sans cela la température ne pourrait être
constante, il y aurait accumulation d’énergie et augmentation de la température.

On constate que le flux thermique est proportionnel à la différence de température,
ce qui invite à définir la résistance thermique du barreau :

Rth =
T1 − T2

Φ
=

L

λS

3.2 Généralisation

Par analogie avec l’électricité, on définit la résistance thermique d’un matériau
de conductivité λ maintenu entre deux températures T1 et T2 et parcouru par un
flux thermique Φ :

Rth =
T1 − T2

Φ
↔

(
Re =

V1 − V2

I

)
L’exemple précédent a montré que trois conditions sont nécessaires pour définir
la notion de résistance thermique :
→ régime permanent, → absence de sources internes, → aucune perte latérale.

On définit également la conductance thermique : Gth =
1

Rth
=

Φ

T1 − T2
.

3.3 Exemple d’application : résistance thermique en géométrie
sphérique

R
1

R
2

T
1

T
2

O λ

On considère un matériau limité par deux coquilles sphériques concentriques de
rayon R1 et R2 et portées respectivement aux températures T1 et T2.
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On souhaite déterminer la résistance thermique de ce dispositif.

On considère le système limité par deux sphères concentriques de rayon respectif
r et r + dr.
En régime permanent et en l’absence d’apports en volume, le flux entrant doit
égaliser le flux sortant, en conséquence Φ(r) = Φ(r + dr) = Φ0.

Φ0 est égal au flux du vecteur courant thermique à travers la surface d’une sphère
de rayon r quelconque :

Φ0 =

∫∫
Σ

~j.d~S =

∫∫
Σ
j(r)dS = j(r)×

∫∫
Σ

dS = j(r)4πr2

La loi de Fourier conduit à : j(r) = −λdT (r)

dr
.

On en déduit :
Φ0 = −λdT (r)

dr
× 4πr2 ⇔ dT = − Φ0

4πλr2
dr

On intègre alors entre R1 (température T1) et R2 (température T2) :∫ T2

T1

dT =
−Φ0

4πλ

∫ R2

r=R1

dr

r2
⇒ T2 − T1 =

Φ0

4πλ

[
1

r

]R2

R1

=
Φ0

4πλ

[
1

R2
− 1

R1

]
La résistance thermique est le rapport de l’écart de température sur le flux ther-
mique, avec T1 > T2 le flux Φ0 sortant est positif :

T1 − T2 =
Φ0

4πλ

[
R2 −R1

R1R2

]
⇒ Rth =

1

4πλ

[
R2 −R1

R1R2

]

3.4 Association de résistances thermiques

T2

R12 R23

T1 3T

Req =R 12 +R 23

association série association parallèle Req

T1 T2

Φa

Φb

Ra

Rb

Ra Rb

Φa ΦbΦ Φ

1
=

1
+

1

Φ =Φ +

Dans le cas de l’association série, pour déterminer la température T2, il suffit
d’appliquer la formule du pont diviseur de tension :

T2 − T3 =
R23

R12 +R23
(T1 − T3) donc T2 = T3 +

R23

R12 +R23
(T1 − T3)

Une application importante de l’association série correspond au double vitrage :
une couche d’air est emprisonnée entre deux couches de verre.

3.5 Approximation des régimes quasi-stationnaires

Condition d’application

→ On sait que les lois de l’électrocinétique, applicables en régime permanent,
restent valables pour les régimes lentement variables (ARQS).

→ Cette approximation est transposable au problème de la conduction thermique.
Cela suppose que le système ait le temps d’adapter le profil de température réel
au profil de température en régime stationnaire.

Précisons cette idée sur l’exemple du barreau conducteur :

T1 T2T(x)

T2

T1

L

T(x)

x

T2

T1 (t1)

T2

T1 (t1)

T1

T1 T1

cas stationnaire

L

x

T(x,t)

T(x,t)

hors ARQScas quasi−stationnaire

L

x

T(x,t)

T(x,t)

(t
2
)

(t) (t)

? On suppose que la température T1(t) évolue en un temps caractéristique T (par
exemple la période d’une évolution sinusoïdale).

? La diffusion dans le barreau s’effectue en une durée typique τ ∼ L2

κ
, avec κ =

λ

ρc
la diffusivité thermique.

? Pour τ � T , on pourra négliger la durée du régime transitoire et supposer que
le barreau se met immédiatement à l’équilibre.

? Hors ARQS, le profil de température dans le barreau n’est plus celui du régime
permanent, la notion de résistance thermique n’est plus applicable.

Si τ = L2/κ la durée caractéristique du régime transitoire dans le matériau est
très petite devant T le temps d’évolution de la perturbation extérieure, l’ARQS
est applicable.
En pratique, on peut alors continuer à appliquer la notion de résistance ther-
mique et l’équation de diffusion se limite, en l’absence de sources internes, à
∆T = 0 dans le matériau.
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Application : analogie électrocinétique

On considère une enceinte de capacité thermique Cth à la température T (t) mise
au contact d’une source de chaleur à la température Text via une isolation de
résistance thermique Rth.

La capacité Cth de l’enceinte est supposée suffisante pour que les conditions de
l’ARQS soient vérifiées et la notion de résistance thermique applicable.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Text

Rth
Rth

TextCth
T(t)

Φ

schéma thermique 

équivalent

uc(t)

schéma électrique

équivalent

T(t)

enceinte flux thermique

C

R

E

i

Problème thermique Problème électrique

Premier principe enceinte caractéristique condensateur

CthdT = δQ = Φdt C
duc
dt

= i

Φ =
Text − T (t)

Rth
i =

E − uc
R

RthCth
dT

dt
+ T = Text RC

duc
dt

+ uc = E

4 Ondes thermiques

Après avoir considéré les cas du régime stationnaire et de l’ARQS, on s’intéresse
à un problème nécessitant de prendre en compte l’équation de diffusion sous sa
forme générale.

4.1 Présentation du problème

Le sous-sol, situé dans le demi-espace x > 0, est considéré comme un milieu
semi-infini, homogène, de conductivité thermique λ, de masse volumique ρ et de
capacité thermique massique c.

On suppose que la température à la surface du sol (x = 0) est soumise à des

variations sinusoïdales :
Ts(t) = T0 + θ0 cos (ωt)

En régime forcé, l’évolution de la température en surface va imposer des variations
sinusoïdales de température dans le sous-sol. L’équation de diffusion étant linéaire,
on peut utiliser une représentation complexe pour la recherche de la solution :

T (x, t) = T0 +Aei(ωt−kx)

4.2 Résolution, équation de dispersion

En l’absence de source interne, la température du sous-sol vérifie l’équation :

∂T

∂t
= κ

∂2T

∂x2
avec κ =

λ

ρc

En reportant la forme proposée pour la température, on en déduit la relation de
dispersion reliant le vecteur d’onde k à la pulsation ω :

k2 = −iω
κ

En remarquant que −i = e−iπ/2, on en déduit : k = ±(1− i)
x0

, avec x0 =

√
2κ

ω
.

C’est à dire pour la température :

T (x, t) = T0 +Aeiωt

e−i xx0
−
x

x0


La solution en −(1− i)/x0 n’a pas été retenue car elle entraîne une divergence non
réaliste de la température lorsque x devient très grand. En repassant en notation
réelle, on obtient :

T (x, t) = T0 +A exp

(
− x

x0

)
cos

(
ωt− x

x0

)
La température en x = 0 est celle imposée à la surface, ce qui donne A = θ0 ; en
posant v = ωx0, on en déduit finalement :

T (x, t) = T0 + θ0 exp

(
− x

x0

)
︸ ︷︷ ︸
atténuation

cos
(
ω
[
t− x

v

])
︸ ︷︷ ︸

onde
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4.3 Analyse
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T(x,t=0,4P)

→ Onde thermique : le terme en cosinus caractérise une onde progressive "t−x/v"
avec une vitesse de propagation v = x0ω =

√
2κω. Cette vitesse augmente avec

la pulsation, elle est donc plus importante pour les fluctuations journalières que
pour les fluctuations annuelles de température.

La comparaison de la fluctuation en surface cos (ωt) et en profondeur
cos (ωt− x/x0) indique que la température oscille en profondeur avec un retard
x/x0. Ce déphasage est dû à la propagation de l’onde, il est forcément absent
pour l’ARQS.

→ Atténuation : le terme exponentiel indique un amortissement de la fluctuation
avec la profondeur.
L’onde ne se propage que sur une distance de l’ordre de la longueur caractéris-
tique x0.
On parle d’effet de peau thermique. Les fluctuations de température ne se
ressentent que sur une profondeur de l’ordre de x0 =

√
2κ/ω.

La distance caractéristique d’atténuation diminue quand la fréquence augmente,
les fluctuations journalières ne pénètrent donc quasiment pas dans le sol (x0 de
l’ordre de 10 cm), les fluctuations annuelles un peu plus (x0 de l’ordre du mètre).

Capacités exigibles :

→ Formulation infinitésimale des principes de la thermodynamique :
Énoncer et exploiter les principes de la thermodynamique pour une transformation élé-
mentaire.
Utiliser avec rigueur les notations d et δ en leur attachant une signification.

→ Équation de la diffusion thermique
Citer les trois modes de transfert thermique.
Expliquer que la diffusion est un déplacement d’énergie de proche en proche dans la ma-
tière macroscopiquement immobile.
Exprimer le flux thermique comme le flux du vecteur ~jQ à travers une surface orientée.
Utiliser les champs scalaires intensifs (volumiques ou massiques) associés à des grandeurs
extensives de la thermodynamique.
Énoncer et utiliser la loi de Fourier. Citer quelques ordres de grandeur de conductivité
thermique dans les conditions usuelles : air, eau, béton, acier.
Pour un milieu évoluant à volume constant, établir l’équation locale traduisant le premier
principe dans le cas d’un problème ne dépendant que d’une seule coordonnée d’espace en
coordonnées cartésiennes, cylindriques et sphériques.
Admettre et utiliser une généralisation en géométrie quelconque en utilisant l’opérateur
divergence et son expression fournie.
Établir l’équation de diffusion vérifiée par la température, avec ou sans terme source.
Analyser une équation de diffusion en ordre de grandeur pour relier des échelles caracté-
ristiques spatiale et temporelle.
Relier l’équation de diffusion à l’irréversibilité temporelle du phénomène.
Exploiter la linéarité de l’équation de diffusion.
Manipuler le terme source local et intégral de l’effet Joule.
Exploiter la continuité du flux thermique.
Exploiter la continuité de la température pour un contact thermique parfait. Utiliser la
relation de Newton (fournie) à l’interface solide-fluide. Traduire le contact avec une paroi
calorifugée.

→ Régime stationnaire, ARQS
Définir la notion de résistance thermique par analogie avec l’électrocinétique. Énoncer les
conditions d’application de l’analogie.
Établir l’expression de la résistance thermique d’un cylindre calorifugé latéralement.
Exploiter des associations de résistances thermiques en série ou en parallèle.
Mettre en évidence un temps caractéristique d’évolution de la température. Justifier
l’ARQS. Établir l’analogie avec un circuit électrique RC.

→ Ondes thermiques
Établir la relation de dispersion des ondes thermiques en géométrie unidirectionnelle.
Mettre en évidence le déphasage lié à la propagation.
Établir une distance caractéristique d’atténuation.
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