Lycée Naval, Spé 2.
PHENOMENES DE TRANSPORT. 02. Transfert thermique par conduction.

Transfert thermique par conduction

1 Formulation infinitésimale des principes de la ther-
modynamique

1.1 Premier principe de la thermodynamique
Enoncé vu en premiére année

— L’énergie interne est une grandeur extensive : Uy o = U;j + U,

— L’énergie interne est une fonction d’état : a ’équilibre thermodynamique,
elle ne dépend que d’un petit nombre de variables d’état.

— Pour un systéme fermé, évoluant entre deux états d’équilibre, le bilan d’énergie
pour le systéme s’écrit :

Cas d’une transformation infinitésimale

Dans le cas d’une transformation infinitésimale, c’est & dire entre deux états d’équi-
libre trés voisins, le dernier point se réécrit :

(U + Ep) = 0W + Q|

Significations des notations :

— A symbolise une différence finie, par exemple AU = Uy — U;, « d » est son
équivalent pour les différences infinitésimales, dU signifie que 'on évalue la diffé-
rence de U entre deux états d’équilibre « trés voisins ».

Les écritures dW ou @Q sont donc prohibées; en effet on ne peut évaluer une
différence de travail entre I'état final et I’état initial, le travail étant un transfert
d’énergie ayant lieu lors d’une évolution et non une grandeur associée a l’état
initial ou final.

— Le symbole « ¢ » fait lui simplement référence & une « petite » quantité, ainsi
OW représente un travail infinitésimal.

1.2 Deuxiéme principe de la thermodynamique
Enoncé vu en premiére année

— L’entropie est une grandeur extensive : 5110 = 51 + .59,
— L’entropie est une fonction d’état : a 1’équilibre thermodynamique, elle ne

Explication :

dépend que d'un petit nombre de variables d’état.
— Pour un systéme fermé, évoluant entre deux états d’équilibre et lors d’une
évolution monotherme : 0

AS=S.+S. avec S.=— et

= Sc >0 (=0 siréversible)
To

Cas d’une transformation infinitésimale

Dans le cas d’une transformation infinitésimale, c’est & dire entre deux états d’équi-
libre infiniment voisins, le dernier point se réécrit :

dS =65, +6S. avec 6S.= @

1o

et 6S.>0

2 Equation de la diffusion thermique

2.1 Les différents modes de transfert thermique

Lorsque deux corps & des températures différentes sont mis en contact thermique,
on observe un transfert thermique du corps le plus chaud vers le corps le plus froid
qui tend & homogénéiser les températures.

On distingue trois types de transfert thermique : la conduction, la convection
et le rayonnement.

La conduction (ou diffusion) thermique

La conduction (ou diffusion) thermique correspond & un transfert d’énergie (sous
forme thermique) sans mouvement macroscopique de matiére.

Exemple : une cuillére en inox plongée dans de ’eau chaude voit son extrémité a

I’air libre s’échauffer rapidement. On privilégie une cuillére en bois pour ne pas se
briler. La section et la longueur de I'objet jouent également un réle important.

I’agitation microscopique dans le cristal croit avec la température,
cette agitation se propage de proche en proche au sein du cristal (via les électrons
de conduction dans le cas du métal).

La convection thermique

La convection thermique correspond & un transfert thermique par mouvement
macroscopique du milieu, elle n’est possible que dans un fluide.



Exemple : I'air au voisinage d’un radiateur s’échauffe, cet air plus chaud et moins
dense s’éléve provoquant un transfert thermique.

Le rayonnement

Le rayonnement correspond & un transfert thermique via un rayonnement élec-
tromagnétique. Contrairement aux deux autres, ce mode de transfert existe méme
dans le vide.

Exemple : le Soleil émet un rayonnement électromagnétique qui transporte de
I'énergie (Cf. théoréme de Poynting). Plus généralement tout corps chaud émet
un rayonnement.

Dans toute la suite, on s’intéressera essentiellement au phénomeéne de conduction
thermique.

2.2 Vecteur densité de courant thermique

Soit une surface élémentaire de vecteur surface dS , et 0Q le transfert thermique
qui traverse cette surface pendant d¢. On appelle, vecteur densité volumique
de courant thermique, noté jg, le vecteur défini par :

6Q = jo.dSdt

_>
ds

Dans le systéme international d’unités, le vecteur courant s’exprime en W - m~—2,

il représente le transfert thermique qui traverse une section par unité de surface
et de temps.
oQ

0P = T jQ.dg représente le flux thermique élémentaire & travers ds ; par

intégration, on obtient le flux thermique ®, flux du vecteur fQ a travers la
surface orientée X :

2.3 Loi phénoménologique de Fourier

La loi de Fourier rend compte du phénoméne de diffusion thermique en reliant
le vecteur densité de courant thermique au gradient de température selon :

fQ = —\ x gradT
X est la conductivité thermique, elle s’exprime en W -m™! - K1,

Remarques :

* Cette loi est une loi phénoménologique comme la loi d’Ohm locale.

* le coeflicient A\ est toujours positif, le signe « - » dans la formule assure que la
diffusion thermique s’effectue du « chaud vers le froid » (vecteur jg orienté vers
les basses températures).

* La conductivité thermique dépend du matériau et (un peu) de la température.

Matériau air eau
A(W-m~t. K1) | 0,026

béton | acier | polystyréne
06 | =1 16 0,04

2.4 Bilan d’énergie
Modéle unidirectionnel (géométrie cartésienne)

* On considére un matériau de masse volumique p et de capacité thermique
massique ¢, a l'intérieur duquel peuvent exister des sources internes d’énergie
(exemples : radioactivité, effet Joule), on note py, la puissance volumique appor-
tée par ces processus.

On applique, entre t et t 4 dt, le premier principe & un élément de longueur dx et
de section S.

AU = §W +6Q
section Y —p . >
aire S N j(x) v J(x+dx)
— P :_>
! |
x| x+dx

— 0W = 0 (approximation du volume constant pour une phase condensée)

T
— dU = dom x ¢ x dT = (pSdzx) x ¢ x dT =~ pSdzx x ¢ X %—tdt (a x fixé)
— (SQ = 5Qﬂux —"_ 5Qsource interne ( )
. . 0P _ 8jQ T, t
* 0Qfux = P(z,t)dt — ®(x + dz, t)dt = —%dmdt = —TSda:dt

S uniforme

* (SQsource interne = pthdedt



En géométrie cartésienne, pour un probléme ne dépendant que d’une variable
d’espace, le bilan thermique conduit & ’équation locale :
or  Jdjog

"o on

Modéle unidirectionnel (géométrie cylindrique)

On considére maintenant un dispositif pour lequel le champ de température admet
une invariance par translation et rotation autour d’un axe Oz. La température

T(r,t) ne dépend que du temps et de la variable r des coordonnées cylindriques.
v4

=y

Dans une telle configuration le vecteur densité de courant thermique est radial :

- - T(r,t
Jjo = —)\graaT = Jjo= —/\ag;’)ﬁr

On réalise le bilan d’énergie pour un volume infinitésimal compris entre deux
cylindres coaxiaux de rayon r et r + dr et de longueur [.
oT
%dU:pXQTrrdrlxcxadt
— 5@ = 6Qﬂux + 6Qsource interne
oP(r,t)

* 0Qaux = [P(r,t) — ®(r +dr t)|dt = —Tdrdt avec D(r,t) = 2mriljo(r,t)
r

* 5Qsource interne = Pth X 2mrdrl x dt

En géométrie cylindrique, pour un probléme ne dépendant que d’une variable
d’espace, le bilan thermique conduit a ’équation locale :

Modéle unidirectionnel (géométrie sphérique)

On considére maintenant un dispositif pour lequel le champ de température est
a symétrie sphérique. La température T'(r,t) ne dépend que du temps et de la
variable r des coordonnées sphériques.

Dans une telle configuration le vecteur densité de courant thermique est radial :
- oT(r,t)

jQ = —)\gragT = Jjo= —)\Tur
r
On réalise le bilan d’énergie pour un volume infinitésimal compris entre deux
sphéres concentriques de rayon r et r + dr.

T
—>dU:px47rr2dr><c><%—tdt

— (SQ = 5Qﬁux + 5QSOHI‘C6 interne

* 0Qfux = [‘b(T‘, t) — (I)(r + dr, t)] dt = _M

drdt avec ®(r,t) = 4rr?jo(r,t)
r

2
* 5Qsource interne — Pth X 4rredr x dt

En géométrie sphérique, pour un probléme ne dépendant que d’une variable d’es-
pace, le bilan thermique conduit & I’équation locale :

ca—T—}—ig [7‘2' (r t)] =
p at TQ 87" ]Q 9 _pth

Généralisation

Le premier principe de la thermodynamique se traduit par la relation locale :

or 4 divi
C—— 1v =
P ot JQ = Dth

Remarque : cette équation est a rapprocher de I’équation de conservation de la
charge. La différence vient du second membre non nul avec la présence d’un terme
source.

Pour un systéme a volume constant, cette loi, simple reformulation du premier
principe, est universelle.

2.5 Equation de la diffusion thermique
Expression en présence de sources internes

En substituant la loi de Fourier dans le bilan d’énergie, on obtient :

or — oT
PCar + div (—)\gradT) =p, donc Peor = AAT + pipy

La température vérifie I’équation de la diffusion thermique :

oT oTr 0T
-7 = AT +py, ou pe—e = A + pi

pc En 5 922 1D cartésienne




Expression sans terme source

En I'absence de terme source, la température vérifie ’équation de la diffusion
thermique :

oT or  o°T
E =rAT ou E = K}@
avec k = \/(pc), appelée diffusivité thermique (m?/s).

1D cartésienne

Commentaires

L’équation de la diffusion thermique est une équation aux dérivées partielles dont
la résolution est complexe dans le cas le plus général. On peut cependant faire
plusieurs remarques :

— Analyse dimensionnelle : pour un probléme donné, soit L la longueur carac-
téristique et 7 la durée d’évolution du phénomeéne de diffusion thermique. D’une
simple analyse dimensionnelle, on déduit, en ordre de grandeur :

T T L?

; X ,{ﬁ <~ T X ?
Pour atteindre des régions dix fois plus éloignées, un mobile se déplacant & la
vitesse v met 10 fois plus de temps, le phénoméne de diffusion met, quand & lui,
cent fois plus de temps!
Ceci explique que, dans les gaz ou les liquides, les phénoménes de diffusion soient
souvent masqués par les effets convectifs.

— Irréversibilité : 'inversion du temps (¢ — —t) ne laisse par 'équation inva-
riante : cela traduit 'irréversibilité physique du phénomeéne de diffusion.

— Linéarité : ’équation de diffusion thermique est linéaire a coefficients réels, la
représentation complexe peut donc étre exploitée dans la recherche de solution.

2.6 Conditions aux limites

() (2) fluide extérieurT,,,
milieu — .
T paroiT(x,,t)
X t solide 1 solide 2 A /x
0 T 1 _» _> | 0
Sflux thermique . milieu (3)
imposé @ 0

L’équation de diffusion dépend du temps et de variables spatiales. Pour la ré-
soudre, il faut disposer de conditions initiales (par exemple : « en t = 0, la tempé-
rature est de 295 K ») mais aussi de conditions aux limites (variables spatiales).

Cas d’un flux imposé (1)

* Dans le cas d'un probléme unidimensionnel, si on impose un flux ®( a travers

une section S située a I'extrémité xy du matériau :
) oT
x ($07t)

oT
En particulier, si la paroi est calorifugée : | — = 0.
ox (0,t)

Contact entre deux solides (2)

* Dans le cas d’un contact entre deux solides, il ne peut pas y avoir accumulation
d’énergie a cette interface, 1’égalité des flux thermiques s’écrit :

T T+
(%), ()
L/ (x5 1) T/ (@t

Un contact « parfait » suppose, en outre, ’égalité des températures sur la surface
de contact :
Ti(xg,t) = To(ag 1)

Contact avec un fluide (3)

* Les échanges thermiques entre le fluide extérieur (T¢,;) et la surface du matériau
(T') sont souvent modélisés par la loi de Newton qui donne le flux sortant a
travers une surface unité : jo = h [T — Teay).

2.7 Exercice d’application : ailette de refroidissement

On s’intéresse & la température au sein d’une ailette de refroidissement (rayon R)
et on suppose que la température ne dépend que de z; au niveau de la surface
latérale, les échanges thermiques sont régis par la loi de Newton, la puissance
dissipée par un élément de la paroi latérale valant AP’ = h(T'(x) — T¢)dSiaz.

Jo(x+dx)

A
v

- T
On applique le premier principe a un élément de lailette situé entre x et = + dx.
Il faut cependant prendre garde & ne pas oublier le transfert a travers la surface



latérale dans le bilan.
oT

dU = pSd
U prcat

dt = jo(z,t)Sdt — jo(z + dz,t)Sdt — h (T'(z,t) — T¢) 2r Rdzdt

En utilisant la loi de Fourier jg(z,t) = —)\8—, on en déduit :
x

or 0°T 2k

pPC—— = A5 — —

ot 0x2 R

En supposant le régime stationnaire établi, ’équation se simplifie selon :

(T(x? t) - Te)

d®T(z) T(x) T, 5, AR
W g — g Avee at=o
La solution générale de cette équation s’écrit :
T(x) =T, + Aexp(—x/a) + Bexp (z/a) avec T(0)=1T,

Pour une tige de longueur infinie (en pratique L > a), B est nécessairement nul ;
la condition aux limites impose finalement le profil de température au sein de
Iailette :
T(x)=T.+ (T, — T.) exp (—x/a)
M R2 (T, — T)

On montre que lailette dissipe une puissance thermique P = ——————=,
a

3 Résistance thermique

3.1 Exemple d’un barreau calorifugé

On se place en régime permanent et en I’absence de sources d’énergie in-
ternes. On considére le cas d’un barreau calorifugé latéralement dont les ex-
trémités sont maintenues aux températures 77 et To (71 > T3).

T, T .
U — _»
0 — section S
L

* FEn régime permanent, 1’équation de la diffusion thermique prend la forme sim-
plifiée :
d?T(z)
dz?
Avec T'(0) =T et T(L) = T, le profil de température s’écrit :

=0 donc T(zr)=Azx+ B

Ty — T
T(x)=T + 2L xz
L
* On détermine alors le flux thermique qui traverse la tige :
- 5 . dT Ty —T¢
¢ = jo.5U, = joS = —)\ES’ donc @ = )\%S

On remarque que le flux est indépendant de ’abscisse ; le flux entrant en = doit
nécessairement étre évacué en x + dx, sans cela la température ne pourrait étre
constante, il y aurait accumulation d’énergie et augmentation de la température.

On constate que le flux thermique est proportionnel & la différence de température,

ce qui invite & définir la résistance thermique du barreau :
T — 15 L
Rip=—F—=-5
i) AS

3.2 Généralisation

Par analogie avec ’électricité, on définit la résistance thermique d’un matériau

de conductivité A maintenu entre deux températures 17 et 15 et parcouru par un

flux thermique & :
T —-T15 =V
Rth = T 4 (Re = I >

L’exemple précédent a montré que trois conditions sont nécessaires pour définir
la notion de résistance thermique :
— régime permanent, — absence de sources internes, — aucune perte latérale.

1 P

Ry Th—-Ty

On définit également la conductance thermique : Gy, =

3.3 Exemple d’application :
sphérique

résistance thermique en géomeétrie

On considére un matériau limité par deux coquilles sphériques concentriques de
rayon R; et Ry et portées respectivement aux températures 71 et T5.



On souhaite déterminer la résistance thermique de ce dispositif.

On considére le systéme limité par deux sphéres concentriques de rayon respectif
retr+dr.

En régime permanent et en I’absence d’apports en volume, le flux entrant doit
égaliser le flux sortant, en conséquence ®(r) = ®(r + dr) = P.

®( est égal au flux du vecteur courant thermique & travers la surface d’une sphére

de rayon r quelconque :
/ / dS = j(r)4mr?

w = [[Fas = [[ itas =it

T
La loi de Fourier conduit a : j(r) = _)\dd(r)‘
r
On en déduit : ar(r) ©
T 2 0
Py =—\ O X 47r & dT:—4ﬂ_)\r2dr

On intégre alors entre R; (température 77) et Ry (température T5) :
o -9y Rz d o 1& Oy [1 1
T AT\ Jo—p, T ~ dm R T 4mA Ry Ry

La résistance thermique est le rapport de ’écart de température sur le flux ther-
mique, avec T > T5 le flux ®g sortant est positif :

®y [Ry— R 1 [Re—R
PO NN L e ) R S S - ol 0}
4\ R1R2 4m A R1R2
3.4 Association de résistances thermiques
T T
T, ! R, 2
T; e, @, T3 o x % N P=R+,
—>\ —>
R Ry; H —> al
_ — 4 —
association série association parallele Req R, R,

Une application importante de ’association série correspond au double vitrage :
une couche d’air est emprisonnée entre deux couches de verre.

3.5 Approximation des régimes quasi-stationnaires
Condition d’application

— On sait que les lois de 'électrocinétique, applicables en régime permanent,
restent valables pour les régimes lentement variables (ARQS).

— Cette approximation est transposable au probléme de la conduction thermique.
Cela suppose que le systéme ait le temps d’adapter le profil de température réel
au profil de température en régime stationnaire.

Précisons cette idée sur 'exemple du barreau conducteur :

T(x) T(x,1) T(x,1)
T(t7) T)(17)
T,( 1)
«— «— «—>
L L L
cas stationnaire cas quasi—stationnaire hors ARQS

* On suppose que la température Tl(t) évolue en un temps caractéristique T (par
exemple la période d’une évolution sinusoidale).
L2
* La diffusion dans le barreau s’effectue en une durée typique 7 ~ —, avec k = —
K pc
la diffusivité thermique.
* Pour 7 < T, on pourra négliger la durée du régime transitoire et supposer que
le barreau se met immédiatement a ’équilibre.

* Hors ARQS, le profil de température dans le barreau n’est plus celui du régime
permanent, la notion de résistance thermique n’est plus applicable.

Dans le cas de l'association série, pour déterminer la température Ts, il suffit
d’appliquer la formule du pont diviseur de tension :

Ty Ty = 1 Fias

— (T =T donc T:T—i—iT T
R12+Rz3( ! 3) 2 > R 323( 1-Ty)

Si 7 = L?/k la durée caractéristique du régime transitoire dans le matériau est
trés petite devant 7 le temps d’évolution de la perturbation extérieure, '’ARQS
est applicable.

En pratique, on peut alors continuer a appliquer la notion de résistance ther-
mique et ’équation de diffusion se limite, en 'absence de sources internes, a
AT = 0 dans le matériau.




Application : analogie électrocinétique

On considére une enceinte de capacité thermique Cy, a la température T'(t) mise
au contact d’une source de chaleur & la température T,,; via une isolation de
résistance thermique Ryy,.

La capacité Cy, de I'enceinte est supposée suffisante pour que les conditions de
I’ARQS soient vérifiées et la notion de résistance thermique applicable.

e Ry Ry o R
1(t)
< Text
\ T(1) % c, T T, |u(1) c TE
enceinte flux thermique /;;;I;;;

schéma électrique

schéma thermique i
équivalent

équivalent

Probléme thermique Probléme électrique

Premier principe enceinte | caractéristique condensateur

due
CypdT = 6Q = ddt cSte
dt
o_ Lt —T(1) D,
Ry, R
dr du,
RtthhE + T = Teut RC T +u.=F

4 Ondes thermiques

Aprés avoir considéré les cas du régime stationnaire et de 'ARQS, on s’intéresse
& un probléme nécessitant de prendre en compte ’équation de diffusion sous sa
forme générale.

4.1 Présentation du probléme

Le sous-sol, situé dans le demi-espace z > 0, est considéré comme un milieu
semi-infini, homogéne, de conductivité thermique A, de masse volumique p et de
capacité thermique massique c.

On suppose que la température a la surface du sol (z = 0) est soumise a des

variations sinusoidales :
Ts(t) = To + 6 cos (wt)

En régime forcé, ’évolution de la température en surface va imposer des variations
sinusoidales de température dans le sous-sol. L’équation de diffusion étant linéaire,
on peut utiliser une représentation complexe pour la recherche de la solution :

T(x,t) = Ty + Aellwt—ko)

4.2 Reésolution, équation de dispersion

En I'absence de source interne, la température du sous-sol vérifie I’équation :
orT 0*T A
— =Kk—— avec K= —
ot

Ox? pc
En reportant la forme proposée pour la température, on en déduit la relation de
dispersion reliant le vecteur d’onde k a la pulsation w :

W

k? = —i—

K
- 1—1 2K
En remarquant que —i = e~“"/2, on en déduit : k = :I:( , avec Tg =/ —.
i) w

C’est a dire pour la température :
x x

——

T(z,t) = Ty + Ae™! |e To o

La solution en —(1—1i)/xzp n’a pas été retenue car elle entraine une divergence non
réaliste de la température lorsque x devient trés grand. En repassant en notation
réelle, on obtient :

T(x,t) =Ty + Aexp <—$> cos (wt - y:)

Zo Zo

La température en z = 0 est celle imposée & la surface, ce qui donne A = 6y ; en
posant v = wxg, on en déduit finalement :

T(xz,t) =Ty + 0 exp (‘5{)) cos (w [t N %D
N N VNS S L

atténuation onde



4.3 Analyse
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— Onde thermique : le terme en cosinus caractérise une onde progressive "t —x /v"

avec une vitesse de propagation v = rgw = v2kw. Cette vitesse augmente avec
la pulsation, elle est donc plus importante pour les fluctuations journaliéres que
pour les fluctuations annuelles de température.

La comparaison de la fluctuation en surface cos(wt) et en profondeur
cos (wt — x/xp) indique que la température oscille en profondeur avec un retard
x/xo. Ce déphasage est di a la propagation de l'onde, il est forcément absent
pour ’ARQS.

— Atténuation : le terme exponentiel indique un amortissement de la fluctuation
avec la profondeur.

L’onde ne se propage que sur une distance de 'ordre de la longueur caractéris-
tique xg.

On parle d’effet de peau thermique. Les fluctuations de température ne se
ressentent que sur une profondeur de 'ordre de g = /2K /w.

La distance caractéristique d’atténuation diminue quand la fréquence augmente,
les fluctuations journaliéres ne pénétrent donc quasiment pas dans le sol (xo de
l'ordre de 10 cm), les fluctuations annuelles un peu plus (zo de 'ordre du métre).

Capacités exigibles :

— Formulation infinitésimale des principes de la thermodynamique :

Enoncer et exploiter les principes de la thermodynamique pour une transformation élé-
mentaire.

Utiliser avec rigueur les notations d et ¢ en leur attachant une signification.

— Equation de la diffusion thermique

Citer les trois modes de transfert thermique.

Expliquer que la diffusion est un déplacement d’énergie de proche en proche dans la ma-
tiére macroscopiquement immobile.

Exprimer le flux thermique comme le flux du vecteur jQ & travers une surface orientée.
Utiliser les champs scalaires intensifs (volumiques ou massiques) associés a des grandeurs
extensives de la thermodynamique.

Enoncer et utiliser la loi de Fourier. Citer quelques ordres de grandeur de conductivité
thermique dans les conditions usuelles : air, eau, béton, acier.

Pour un milieu évoluant a volume constant, établir I’équation locale traduisant le premier
principe dans le cas d'un probléme ne dépendant que d’une seule coordonnée d’espace en
coordonnées cartésiennes, cylindriques et sphériques.

Admettre et utiliser une généralisation en géométrie quelconque en utilisant ’opérateur
divergence et son expression fournie.

Etablir I’équation de diffusion vérifiée par la température, avec ou sans terme source.
Analyser une équation de diffusion en ordre de grandeur pour relier des échelles caracté-
ristiques spatiale et temporelle.

Relier I’équation de diffusion a l'irréversibilité temporelle du phénoméne.

Exploiter la linéarité de I’équation de diffusion.

Manipuler le terme source local et intégral de l'effet Joule.

Exploiter la continuité du flux thermique.

Exploiter la continuité de la température pour un contact thermique parfait. Utiliser la
relation de Newton (fournie) a l'interface solide-fluide. Traduire le contact avec une paroi
calorifugée.

— Régime stationnaire, ARQS

Définir la notion de résistance thermique par analogie avec ’électrocinétique. Enoncer les
conditions d’application de I’analogie.

Etablir 'expression de la résistance thermique d’un cylindre calorifugé latéralement.
Exploiter des associations de résistances thermiques en série ou en paralléle.

Mettre en évidence un temps caractéristique d’évolution de la température. Justifier
I’ARQS. Etablir I’analogie avec un circuit électrique RC.

— Ondes thermiques

Etablir la relation de dispersion des ondes thermiques en géométrie unidirectionnelle.
Mettre en évidence le déphasage 1ié a la propagation.

Etablir une distance caractéristique d’atténuation.
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