
Lycée Naval, Spé 2.

TD04. Phénomènes de transport.
Conduction électrique, diffusion thermique et de particules

PhTr009. Modèle de Drude (*).

1. On applique la deuxième loi de Newton à un électron dont on suppose qu’il
n’est soumis qu’à la force électrique et à la force de frottement fluide.

m
d~v

dt
= −e ~E − m~v

τ
⇔ d~v

dt
+
~v

τ
=
−e ~E
m

2. En régime permanent, la solution de l’équation vaut : ~v =
−eτ
m

~E.
On en déduit le vecteur densité de courant électrique :

~j = n× (−e)× ~v =
ne2τ

m
~E donc γ0 =

ne2τ

m

3. L’excitation étant sinusoïdale, on cherche une réponse sinusoïdale de la
forme ~v(t) = ~v0 cos (ωt+ ϕ) ; en appliquant la représentation complexe à
l’équation du mouvement on en déduit :

imω~v = −e~E − m

τ
~v ⇔ ~v =

−eτ
m

1

1 + iωτ
~E

C’est à dire pour le vecteur densité de courant électrique :
~j = n× (−e)× ~v ⇒ ~j =

ne2τ

m

1

1 + iωτ
~E

On en déduit ωc = 1/τ . Cette conductivité complexe est de type « filtre
passe-bas du premier ordre ».
Du fait de l’inertie des électrons au sein de la structure, les porteurs de
charge ne peuvent plus suivre les oscillations de l’excitation électrique pour
des fréquences grandes devant la pulsation de coupure ωc.
Les mouvements sont donc atténués et le caractère complexe de la conduc-
tivité électrique traduit la présence d’un retard du vecteur courant vis à vis
de l’excitation électrique.

PhTr039. Résistance d’un conducteur ohmique sphérique (**)

On considère un élément infinitésimal compris entre deux sphères infiniment voi-
sines situées en r et r + dr ; pour cet élément, on peut appliquer la formule du
tronçon rectiligne avec une section S = 4πr2 et une longueur dr :

δRelec =
dr

γ4πr2

Les différentes coquilles sphériques sont toutes parcourues par le même courant
électrique et sont donc en série, on obtient la résistance électrique totale par simple
intégration :

Relec =

∫ R2

R1

dr

γ4πr2
⇒ Relec =

1

4πγ

[
1

R1
− 1

R2

]
PhTr018. Double vitrage (*)

1. Résistances thermiques :

→ pour le verre : Rv =
e

λvS
; → pour l’air : Ra =

e

λaS
.

2. Dans le cas du double vitrage, les résistances sont associées en série, on en
déduit :

Rdv = 2Rv +Ra = Rv

(
2 +

Ra

Rv

)
donc Rdv = Rv

(
2 +

λv
λa

)
3. On constate que Rdv ≈ 102Rv. En emprisonnant une couche d’air, on aug-

mente considérablement la résistance thermique de la vitre ce qui diminue
d’autant les pertes thermiques et la nécessité de chauffage pour compenser
ces pertes.

PhTr012. Chauffage d’une maison (**)

1. Les résistances sont en parallèle, la résistance équivalente vaut :

Req =
Rth1Rth2

Rth1 +Rth2
= 1, 67× 10−3 K ·W−1

Par définition de la résistance thermique, le flux thermique sortant vaut

Φ =
Ti − Te
Req

. Pour maintenir l’intérieur de la maison à T = Ti, un apport

thermique équivalent doit compenser les pertes thermiques :

Peq =
Ti − Te
Req

=
10

1, 67× 10−3
⇒ Peq = 6, 0 kW

2. On applique le premier principe à la maison sur une durée dt :
dU = δQ avec dU = CdT

Pour les transferts thermiques, il faut tenir compte de l’apport de la source
de chauffage et des pertes thermiques :
→ apport : δQ1 = Pdt

→ pertes : δQ2 = −T − Te
Req

dt pour T > Te, un transfert thermique est cédé

par le système à l’extérieur.
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CdT = Pdt− T − Te
Req

donc
dT

dt
+

T

ReqC
=
P

C
+

Te
ReqC

3. La maison, à la température T , est assimilée à un "condensateur" de capacité
thermique C, ce "condensateur" est relié via les résistances thermiques des
murs et du toit à une source thermique (équivalent d’un générateur idéal
de tension) à la température Te. La puissance du système de chauffage à
la dimension d’un flux thermique, il s’apparente à une source de courant
susceptible de "charger le condensateur". On en déduit le schéma électrique
équivalent :

R
th1

R
th2T

e PC

T Pφ

On applique la loi des nœuds au niveau du condensateur :

C
dT

dt
= P + Φ donc C

dT

dt
= P +

Te − T
Req

Ce qui redonne bien l’équation différentielle.
4. On souhaite que la nouvelle puissance P ′ = Peq/2. La résistance thermique

ajoutée est en série avec Rth2. On commence par écrire l’expression de la
conductance thermique avant et après l’installation de la résistance R′ :

1

Rth1
+

1

Rth2
=
Peq

∆T
et

1

Rth1
+

1

Rth2 +R′
=

P ′

∆T
=

Peq

2∆T
On en déduit :

2

Rth2 +R′
+

2

Rth1
=

1

Rth1
+

1

Rth2
⇒ 2

Rth2 +R′
=

1

Rth2
− 1

Rth1

R′ =
Rth2 (Rth1 +Rth2)

Rth1 −Rth2
⇒ R′ = 3, 0× 10−3 K ·W−1

PhTr003. Résistance thermique d’une gaine cylindrique (**).
1. Si on appelle Φ0 le flux thermique sortant, et ∆T = T1 − T2 l’écart de

température entre l’intérieur et l’extérieur, la résistance thermique est définie
par :

Rth =
∆T

Φ0

En régime permanent et en l’absence d’apports en volume, le flux thermique
qui traverse un cylindre de longueur l à l’intérieur de la gaine est indépendant
du rayon r du cylindre :

Φ0 = Φ(r) =

∫∫
~j.d~S = j(r)× 2πrl = −λ× dT

dr
× 2πrl

Pour la dernière égalité, on a utilisé la loi de Fourier. Il reste à intégrer cette
relation entre r = R1 et r = R2 :

T2 − T1 =

∫ 2

1
dT = − Φ0

2πlλ

∫ R2

R1

dr

r
= − Φ0

2πlλ
ln

(
R2

R1

)

⇔ Rth =
T1 − T2

Φ0
=

1

2πlλ
ln

(
R2

R1

)
Application numérique :

Rth =
1, 0

2π × 1, 0× 1, 0
× ln

(
25

20

)
⇒ Rth = 3, 6× 10−2 K ·W−1

2. Les résistances sont en série et s’ajoutent : Rth = Rth1 +Rth2. Pour diviser
les pertes par 10, il faut multiplier la résistance par 10 ce qui impose pour
la nouvelle résistance Rth2 = 9Rth1. C’est à dire en transposant la formule
précédemment obtenue :

1

2πλ′l
ln

(
R2 + e′

R2

)
=

9

2πλl
ln

(
R2

R1

)
⇔ ln

(
R2 + e′

R2

)
=

9λ′

λ
ln

(
R2

R1

)

C’est à dire : e′ = R2

e9λ
′
λ

ln

[
R2

R1

]
− 1


A.N. : e′ = 25×

[
e9×0,05×ln (25/20) − 1

]
⇒ e′ = 2, 6 cm .

PhTr002. Sphère radioactive (**).

1. On considère le système délimité par deux sphères de rayon r et r + dr. En
régime permanent les apports (flux thermique en r et apports en volume)
doivent compenser les pertes (flux thermique en r + dr), ce qui s’écrit :

Φ(r)dt+ p× 4πr2drdt = Φ(r + dr)dt ⇔ dΦ

dr
= p× 4πr2

En utilisant la loi de Fourier : Φ(r) = j(r)× 4πr2 = −λdT
dr
× 4πr2

On en déduit :
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d

dr

(
−λdT

dr
× 4πr2

)
= p× 4πr2 ⇔ d

dr

(
dT

dr
r2

)
= −pr

2

λ

2. Une première intégration conduit à :

r2dT

dr
= −pr

3

3λ
+A ⇒ dT

dr
= − pr

3λ
+
A

r2

Une seconde intégration fournit alors :

T (r) = −pr
2

6λ
− A

r
+B

La température ne pouvant diverger à l’origine, la constante A est nécessai-
rement nulle.

De plus, T (r = a) = Ts = −pa
2

6λ
+B. On en déduit :

∀r ∈ [0, a], T (r) = Ts +
pa2

6λ
− pr2

6λ

3. Pour déterminer Ts, il faut utiliser la continuité du flux thermique à la
surface de la sphère :

Φ(r = a−) = −λ
(
dT

dr

)
r=a

× 4πa2 = h(Ts − Te)× 4πa2

Avec −λ
(
dT

dr

)
r=a

= −λ×
(
− pr

3λ

)
r=a

=
pa

3
, on en déduit :

pa

3
= h(Ts − Te) ⇔ Ts = Te +

pa

3h

On peut alors en déduire la température au centre de la sphère :

T (r = 0) = Te +
pa

3h
+
pa2

6λ

Sans surprise la température au centre est plus importante que dans l’air
(réaction nucléaire au sein de la boule) et ceci d’autant plus que la puissance
volumique est grande. A contrario, de meilleurs échanges à la surface (h
plus grand), ou une meilleure diffusion au sein de la boule (λ plus grand)
permettent de mieux évacuer l’énergie et de diminuer la température au
centre.

4. Pour déterminer la puissance évacuée à la surface de la sphère, il est plus
simple d’utiliser le transfert conducto-convectif à la surface et l’expression
de la température Ts :

Φ(r = a+) = 4πa2ϕs = 4πa2 × h(Ts − Te) = 4πa2h× pa

3h

⇔ Φ(r = a+) =
4

3
πa3 × p

Cette puissance n’est en fait rien d’autre que la puissance fournie par les
réactions radioactives au sein de la sphère, produit de la puissance volumique
par le volume.
Ceci est logique : en régime permanent, l’énergie fournie doit être évacuée,
sans cela le système s’échaufferait.

PhTr014. Fonte de la glace (***)

→ Présentation : tant que le mélange est diphasé, la température au sein de la
sphère intérieure est bloquée à T0 = 273 K ; le régime est stationnaire, la notion
de résistance thermique est applicable.
Le système peut être vu comme l’association série de deux résistances thermiques
en série, l’une Rth,1 associée à la coquille sphérique isolante, l’autre Rth,2 associée
au transfert conducto-convectif à la surface de la sphère extérieure. Pour la suite,
on pose T2 = T (R2).

→ On peut alors définir le schéma équivalent suivant :

R1

R2

Rth,2Rth,1

T0 T2 T1

eau
glace

isolant air

→ Démarche : une fois les résistances thermiques déterminées, on pourra en dé-
duire le flux thermique entrant et donc, à l’aide d’un bilan thermique, la quantité
de glace qui fond par unité de temps.

→ Détermination des résistances thermiques
Pour le transfert conducto-convectif à la surface de la sphère extérieure, la loi de
Newton permet de faire apparaître aisément la notion de résistance thermique,
rapport de la différence de température sur le flux thermique :

Rth,2 =
T1 − T (R2)

Φ
=
T1 − T (R2)

ϕs × 4πR2
2

=
1

h× 4πR2
2

Pour déterminer la résistance thermique de la coquille sphérique, on procède de

3



la sorte :
— en régime permanent et en l’absence d’apports en volume, le flux thermique

est le même à travers toute sphère centrée sur l’origine :

jQ(r)× 4πr2 = −λdT
dr
× 4πr2 = Φ0

— on intègre cette équation entre les deux extrémités de la coquille :∫ T (R2)

T (R1)
dT =

∫ R2

R1

−Φ0

4πλ

dr

r2
⇒ ∆T = T (R2)− T (R1) =

Φ0

4πλ

[
1

R2
− 1

R1

]
— on en déduit la résistance thermique :

Rth,1 =
T (R1)− T (R2)

Φ0
=

1

4πλ

[
1

R1
− 1

R2

]
La résistance thermique totale du dispositif est donc :

Rth = Rth,1 +Rth,2 =
1

h× 4πR2
2

+
1

4πλ

[
1

R1
− 1

R2

]
→ Flux entrant : connaissant la résistance thermique du dispositif, et les tempé-
ratures aux extrémités, on en déduit le flux entrant :

Φ =
T1 − T0

Rth
=

T1 − T0

1

h× 4πR2
2

+
1

4πλ

[
1

R1
− 1

R2

]
→ Bilan thermique : le flux d’énergie entrant contribue à faire fondre la glace ;
pendant dt une énergie Φdt est fournie qui contribue à faire fondre une masse dm
de glace telle que :

dm× Lf = Φdt ⇒︸︷︷︸
par intégration

m× Lf = Φ× τ

Application numérique :

Φ =
298− 273

1

6× 4π × 0, 102
+

1

4π × 0, 4

(
1

0, 01
− 1

0, 1

) = 1, 30 W

τ =
1, 0× 10−3 × 335× 103

1, 30
⇒ τ ≈ 2, 6× 102 s

PhTr015. Diffusion en géométrie sphérique, régime stationnaire (**)

1. À l’extérieur de la sphère, le régime est permanent et il n’y a pas de création
de particules en volume ; le flux de particules qui traverse une sphère de rayon
r doit donc être le même que le flux de particules qui traverse une sphère
de rayon r + dr, ce flux est donc indépendant de r ce qui s’écrit :

Φ(r) = jQ(r)× 4πr2 = Φ0

Les particules associées à ce flux sont produites dans la sphère de rayon

R0 ; par unité de temps q0 ×
4

3
πR3

0 sont produites et le même nombre doit
traverser une sphère de rayon r en dehors de la sphère, sinon les particules
s’accumuleraient or le régime est permanent, en conséquence :

jQ(r)× 4πr2 = Φ0 = q0 ×
4

3
πR3

0

Et donc :

pour r > R0, jQ(r) =
q0R

3
0

3r2

À l’intérieur de la sphère, on réalise un bilan de particules sur une durée dt,
entre deux sphères de rayon r et r + dr :
→ nombre de particules qui entrent pendant dt : Φ(r)dt

→ nombre de particules qui sortent pendant dt : Φ(r + dr)dt

→ nombre de particules créées dans le volume pendant dt : q0 × 4πr2drdt

En régime permanent, la conservation du nombre de particules entre les
deux sphères impose :

Φ(r)dt+ q0 × 4πr2drdt = Φ(r + dr)dt

−dΦ(r)

dr
× dr = −q04πr2dr ⇒ d

dr

(
jQ(r)4πr2

)
dr = q04πr2dr

On obtient donc :
d

dr

(
jQ(r)r2

)
= q0r

2

L’intégration de l’équation différentielle conduit à :

r2jQ(r) =
q0r

3

3
+A ⇒ jQ(r) =

q0r

3
+
A

r2

Le vecteur courant ne pouvant diverger à l’origine, la constante A est néces-
sairement nulle.

pour r < R0, jQ(r) =
q0r

3

On remarque que le vecteur courant est continu pour r = R0.

2. Il reste à utiliser la loi de Fick pour déterminer la répartition des particules :

→ Pour r > R0 :

−Ddn
dr

=
q0R

3
0

3r2
⇒ dn

dr
= − q0R

3
0

3Dr2

On intègre cette équation compte tenu que n→ 0 quand r → +∞ :

pour r > R0, n(r) =
q0R

3
0

3Dr
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→ Pour r < R0 :

−Ddn
dr

=
q0r

3
⇒ dn

dr
= −q0r

3D
On intègre cette équation :

n(r) = −q0r
2

6D
+ cste

On détermine la constante en utilisant la continuité de la densité particulaire
pour r = R0 :

q0R
3
0

3DR0
= −q0R

2
0

6D
+ cste donc cste =

q0R
2
0

2D

pour r < R0, n(r) =
q0

2D

(
R2

0 −
r2

3

)
PhTr007. Évaporation de l’éther (***).

1. En régime permanent et en l’absence d’apports en volume, le flux de parti-
cules est le même en tout point de la colonne d’air. La section étant inva-
riante, il en est de même du vecteur courant, ce qui s’écrit, en supposant la
loi de Fick vérifiée :

−Ddn
dz

= cste ⇒ n(z) = Az +B

On détermine les constantes d’intégration à l’aide des conditions aux limites :
n(h) = n1 et n(H) = 0, ce qui conduit au système d’équations :

0 = AH +B et n1 = Ah(t) +B

On en déduit : B = −AH et A = n1/(h(t)−H), c’est à dire :

∀z ∈ [h(t), H] , n(z) = n1 ×
z −H
h(t)−H

En z = h(t), la loi des gaz parfaits conduit à :

Psat =
δnmolRT

dV
=
δN

Na

RT

dV
=
δN

dV
× R

Na
T = n1kBT

2. Connaissant n(z) la densité particulaire, on peut en déduire le flux de par-
ticules à l’aide du vecteur courant :

Φ = −Ddn
dz
× S = −D × n1

h(t)−H
× S ⇒ Φ =

Dn1S

H − h(t)

3. On trouve l’équation sur h(t) en effectuant un bilan de particules sur l’éther
liquide encore présent.
À l’instant t, il y a N(t) particules d’éther liquide, et N(t + dt) à l’instant
t+ dt, la variation étant due au flux d’évaporation, ce qui s’écrit :

N(t+ dt) = N(t)− Φ(t)dt ⇒ dN = N(t+ dt)−N(t) = − Dn1S

H − h(t)
dt

On obtient le nombre de particules sous forme liquide à l’instant t, en divi-
sant la masse de liquide par la masse d’une particule :

N(t) =
µ× S × h(t)

M/Na
⇒ dN =

µSNa

M
dh

En égalisant les deux dernières expressions, on obtient l’équation différen-
tielle portant sur h(t) :

µSNa

M
dh = − Dn1S

H − h(t)
dt ⇔ [H − h(t)] dh = −Dn1M

µNa
dt

On intègre alors cette équation entre l’instant initial et un instant quel-
conque :∫ h(t)

h0

[H − h] dh = −Dn1M

µNa

∫ t

0
dt ⇒ H(h(t)− h0)− h2(t)

2
+
h2

0

2
= −Dn1M

µNa
t

4. Une fois la totalité de l’éther évaporée, h(τ) = 0, l’équation précédemment
obtenue conduit à :

−h0H +
h2

0

2
= −Dn1M

µNa
τ ⇔ τ =

µNah0

Dn1M

(
H − h0

2

)
Application numérique :

τ =
626× 6, 02× 1023 × 5, 0× 10−2 × (0, 10− 0, 025)

1, 5× 10−5 × (0, 58× 105/(1, 38× 10−23 × 293)× 74, 1× 10−3

τ = 8, 86× 104 s, soit τ ≈ 1 jour .

5. À l’aide du coefficient de diffusion et d’une analyse dimensionnelle, on peut
définir un temps caractéristique associé à la diffusion de l’éther sur une
hauteur typique H :

D =
H2

τdiff.
⇔ τdiff. =

H2

D
=

0, 102

1, 5× 10−5
= 6, 7× 102 s

Le temps de mise à l’équilibre par diffusion de l’ordre de 10 minutes est
court vis à vis du temps d’évolution du système de l’ordre d’une journée.
L’hypothèse de l’état quasi-stationnaire est bien validée.

PhTr029. Marche au hasard et diffusion dans les solides (**)

1. L’atome sautant de case en case, si l’atome est en xn à l’instant t + τ , il
devait nécessairement être en xn−1 ou en xn+1 à l’instant t ; partant de
xn−1 ou de xn+1, il a une chance sur deux de sauter du bon côté, donc :

p(xn, t+ τ) =
1

2
× p(xn−1, t) +

1

2
× p(xn+1, t)
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2. En passant à la limite continue, la relation précédente s’écrit :

p(x, t+ τ) =
1

2
[p(x− a, t) + p(x+ a, t)]

On effectue alors les développements limités indiqués :

? p(x, t+ τ) ' p(x, t) + τ
∂p

∂t

? p(x+ a, t) ' p(x, t) + a
∂p

∂x
+
a2

2

∂2p

∂x2

? p(x− a, t) ' p(x, t)− a∂p
∂x

+
a2

2

∂2p

∂x2

En reportant dans l’équation liant les probabilités, on en déduit que les

termes en p(x, t) et en
∂p

∂x
disparaissent pour donner :

∂p

∂t
=
a2

2τ
× ∂2p

∂x2

On obtient une équation de diffusion avec D =
a2

2τ
.

PhTr090. Fonte d’un glaçon (***)

1. Si on néglige la capacité thermique du liquide, il ne peut accumuler d’énergie
thermique, en conséquence le flux d’énergie qui traverse une sphère de rayon
r est le même que celui qui traverse la sphère de rayon r+ dr. Si on appelle
Φ0 ce flux et en utilisant la loi de Fourier au sein du fluide pour lequel on
néglige les phénomènes de convection :

Φ0 = Φ(r) = 4πr2 ×−λdT
dr

⇔ −λdT
dr

=
Φ0

4πr2

Ce qui donne par intégration :

∀r > R(t), T (r, t) =
Φ0

4πλr
+A

Les conditions aux limites imposent T → T0 quand r → +∞ et T (r =
R+(t)) = Tf ; ces deux conditions permettent d’en déduire les constantes
Φ0 et A, ce qui donne finalement :

∀ r > R(t), T (r, t) =
R(t)

r
[Tf − T0] + T0

2. La différence de température entre le glaçon et l’eau entraîne un flux ther-
mique du liquide vers le glaçon. Cette énergie reçue par le glaçon le fait
fondre. On évalue le flux thermique en r = R+(t) grâce à l’expression de la

température dans l’eau précédemment obtenue.
Pendant une durée dt, la masse du glaçon varie de dm < 0 telle que :

dm× lf = Φ× dt = −λdT
dr
× 4πr2dt = −λ× 4πr2 ×

(
−

[Tf − T0]R(t)

r2

)
dt

dm× lf = λ× 4πR(t) [Tf − T0] dt

La perte de masse dm est associée à une couche sphérique d’aire 4πR2(t) et
d’épaisseur dR qui disparaît donc :

ρs × 4πR2(t)dR× lf = λ× 4πR(t) [Tf − T0] dt ⇔ R(t)dR =
λ(Tf − T0)

ρs × lf
dt

3. Ceci conduit par intégration à : R2(t)−R2
0 =

2λ(Tf − T0)

ρs × lf
×t et finalement :

R(t)2 = R2
0 −

2λ(T0 − Tf )

ρs × lf
× t

La fonte complète du glaçon correspond à R(tf ) = 0, c’est à dire :

tf =
R2

0ρslf
2λ(T0 − Tf )

Avec un glaçon de 1,0 cm de rayon, et une température de 15◦C, une appli-
cation numérique conduit à :

tf =
1× 10−4 × 0, 92× 103 × 333× 103

0, 6× 15
≈ 1702 s ⇒ tf ≈ 1/2 h

La durée apparaître quelque peu surestimée, les phénomènes de convection
dans l’eau n’ont pas été pris en compte et augmentent dans une situation
réelle les échanges thermiques.

PhTr087. Survie dans un igloo (**)

En régime permanent, la puissance thermique P dégagée par l’individu doit com-
penser les pertes dues au flux sortant Φ0, soit P = Φ0.

Il faut maintenant évaluer le flux sortant ou ce qui revient au même la résistance
thermique de l’igloo.

Au sein de la neige compactée, l’absence d’apports en volume et le régime perma-
nent assurent que le flux est indépendant de la distance à l’axe :

Φ(r + dr) = Φ(r) = Φ0
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Le vecteur courant thermique est purement radial au sein de la neige compactée,
le flux s’obtient en intégrant sur la demi-sphère :

Φ0 =

∫∫
Σ

~jQ.d~S =

∫∫
Σ
jQ(r)dS = jQ(r)

∫∫
Σ
dS = jQ(r)× 2πr2

L’application de la loi de Fourier conduit à :

−λdT
dr
× 2πr2 = Φ0 ⇔ dT =

−Φ0

2πλr2
dr

On intègre alors sur l’épaisseur de la neige compactée :∫ Text

Tint

dT =

∫ R+e

R

−Φ0

2πλ
× dr

r2
⇒ Text − Tint =

Φ0

2πλ

[
1

R+ e
− 1

R

]
Sachant que Φ0 = P , on en déduit finalement :

2πλ(Text − Tint)
P

=
1

R+ e
− 1

R

Il reste alors à isoler l’épaisseur e, avec ∆T = Tint − Text :

1

R+ e
=

1

R
+

2πλ× (−∆T )

P
⇔ e =

1

1

R
− 2πλ∆T

P

−R

Application numérique :

e =
1

1

1, 0
− 2π × 0, 05× 20

50

− 1 ⇒ e ≈ 14 cm

Remarque : l’épaisseur étant relativement faible vis à vis du rayon, on peut ap-
procher l’expression de la résistance thermique par un modèle à une dimension :
Rth =

e

λ× 2πR2
, ce qui donne la formule simplifiée pour l’égalité du flux ther-

mique sortant et de la puissance fournie :

P =
∆T

Rth
= ∆T × λ× 2πR2

e
⇔ e =

∆T × 2πR2 × λ
P

≈ 13 cm

On constate que ce calcul approché donne un résultat très proche du calcul complet
et qu’il représente donc une bonne alternative.
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