Lycée Naval, Spé 2.

TDO04. Phénoménes de transport.

Conduction électrique, diffusion thermique et de particules

PhTr009. Modéle de Drude (*).

1. On applique la deuxiéme loi de Newton & un électron dont on suppose qu’il
n’est soumis qu’a la force électrique et a la force de frottement fluide.

v FomE |47, T —eE
m— = —ek — — —+-=
dt T dt T m
—eT =
2. En régime permanent, la solution de I’équation vaut : ¥ = —F.
m
On en déduit le vecteur densité de courant électrique :
2 2
- . neT = ne-t
J=nx(—e)xV¥= E donc |y =
m m

3. L’excitation étant sinusoidale, on cherche une réponse sinusoidale de la
forme ¥(t) = ¥ cos (wt + ¢); en appliquant la représentation complexe a

I’équation du mouvement on en déduit :
—eT 1 -

Iy

. — i m —
imwi = —elk — —U & —F
T m 1+ wr

C’est a dire pour le vecteur densité de courant électrique :
2
ne‘t 1 -

Fi=nx(—e)xT = j=
z (—e) z m 1+wr

On en déduit w, = 1/7. Cette conductivité complexe est de type « filtre
passe-bas du premier ordre ».

Du fait de l'inertie des électrons au sein de la structure, les porteurs de
charge ne peuvent plus suivre les oscillations de 'excitation électrique pour
des fréquences grandes devant la pulsation de coupure w,.

Les mouvements sont donc atténués et le caractére complexe de la conduc-
tivité électrique traduit la présence d’un retard du vecteur courant vis a vis
de I'excitation électrique.

PhTr039. Résistance d’un conducteur ohmique sphérique (**)

On considére un élément infinitésimal compris entre deux sphéres infiniment voi-
sines situées en r et r + dr; pour cet élément, on peut appliquer la formule du
troncon rectiligne avec une section S = 4772 et une longueur dr :

dr
5Relec = W

Les différentes coquilles sphériques sont toutes parcourues par le méme courant
électrique et sont donc en série, on obtient la résistance électrique totale par simple
intégration :

Rz gy 1 [1 1
Ruee= | -2 o |Rygpe=— |— — =
elec /R1 747_[_7“2 elec 47_[_7 |:R1 R2:|

PhTr018. Double vitrage (*)

1. Résistances thermiques :

— pour le verre : | R, = )\ULS ; — pour lair : | R, = )\:S .
2. Dans le cas du double vitrage, les résistances sont associées en série, on en
déduit :
R, Ay
Ry, =2R, + R, =R, |2+ — donc |Rgo =Ry, |2+ —
R, Aa

3. On constate que Ry, ~ 10?R,. En emprisonnant une couche d’air, on aug-
mente considérablement la résistance thermique de la vitre ce qui diminue
d’autant les pertes thermiques et la nécessité de chauffage pour compenser
ces pertes.

PhTr012. Chauffage d’une maison (**)

1. Les résistances sont en paralléle, la résistance équivalente vaut :

Rini R
Reg = — 12 1 67 x 1073 K- W™
Rin1 + Rina
Par définition de la résistance thermique, le flux thermique sortant vaut

E_Te

P = . Pour maintenir l'intérieur de la maison & T' = T}, un apport

eq
thermique équivalent doit compenser les pertes thermiques :

T, — T 10
FPeq = ZReq "= 167103 Peq = 6,0 kW
2. On applique le premier principe & la maison sur une durée dt :
dU =96Q avec dU = CdT
Pour les transferts thermiques, il faut tenir compte de 'apport de la source
de chauffage et des pertes thermiques :
— apport : 6Q1 = Pdt
T-T,

eq
par le systéme & l'extérieur.

— pertes : 0Q2 = — dt pour T' > T,, un transfert thermique est cédé




T-T, d dT T P T,

R " @ "R,0T 0T R,

3. La maison, & la température T, est assimilée & un "condensateur" de capacité
thermique C, ce "condensateur" est relié via les résistances thermiques des
murs et du toit & une source thermique (équivalent d’un générateur idéal
de tension) a la température T,. La puissance du systéme de chauffage a
la dimension d’un flux thermique, il s’apparente & une source de courant
susceptible de "charger le condensateur". On en déduit le schéma électrique
équivalent :

CdTI' = Pdt —

Rth]
o T AP
A 4
D e == e
1 i i
On applique la loi des nceuds au niveau du condensateur :
dr dT T.—T
— =P+ — =P
C 7 + donc |C 7 + R,

Ce qui redonne bien ’équation différentielle.

4. On souhaite que la nouvelle puissance P’ = P,.,/2. La résistance thermique
ajoutée est en série avec Rypo. On commence par écrire 'expression de la
conductance thermique avant et aprés I'installation de la résistance R’ :

1 1 P, 1 1 P’ Py
—|— = et —|— = — =
Rini Rino AT Rint Ripo + R/ AT 2AT

On en déduit :

2 2 1 1 2 1 1

R + R

— + — —_
Ripo + R Ryt Rt Runo Ripo Rin
, Rina (Rin1 + Rinz)

R =
Rip1 — Ripo

R =30x103K - W!

PhTr003. Résistance thermique d’une gaine cylindrique (**).

1. Si on appelle ¢ le flux thermique sortant, et AT = T — T Iécart de
température entre I'intérieur et I’extérieur, la résistance thermique est définie
par :

En régime permanent et en I’absence d’apports en volume, le flux thermique
qui traverse un cylindre de longueur [ & I'intérieur de la gaine est indépendant
du rayon r du cylindre :

oo T
<I>0:<I>(r)://j.dS:j(r) X 2mrl = —\ X Z—T x 2mrl

Pour la derniére égalité, on a utilisé la loi de Fourier. Il reste & intégrer cette
relation entre r = Ry et r = Ry :

2 R
TQ—le/ dT:—& ar _ &1 <R2>
1

27N Jp, T 2alh T\ Ry
n-T, 1 Ry
= = 1 P
e |fn=—g = =5 <R1>

Application numérique :

1,0 25
e L O I it
Ren = 5 1 0x 1,0 n<20>

2. Les résistances sont en série et s’ajoutent : R, = Ryip1 + Rype. Pour diviser
les pertes par 10, il faut multiplier la résistance par 10 ce qui impose pour
la nouvelle résistance Rypo = 9Ryp1. C'est & dire en transposant la formule
précédemment obtenue :

1 In Ry +¢ _ 9 In & < In Ry +¢ —9—)\/111 @
2w N1 Ry Y Ry Ro D) Ry

Cest adire: e = Ry |e

AN, : ¢ — 95 x [69><0,05><1n (25/20) _ 1] N _

PhTr002. Sphére radioactive (**).

Ry, =3,6x1072K-W!

1. On considére le systéme délimité par deux sphéres de rayon r et r 4+ dr. En
régime permanent les apports (flux thermique en r et apports en volume)
doivent compenser les pertes (flux thermique en r + dr), ce qui s’écrit :

d®
O(r)dt + p x dnridrdt = ®(r + dr)dt < il s 4rr?
T

dr
En utilisant la loi de Fourier : ®(r) = j(r) x 471 = —)xd— x 4mr?
r

On en déduit :



2
d <—/\dT X 47r'r2> =pxd4nr? & 4 (dT 2) S

dr \""dr dr \dr" A

2. Une premiére intégration conduit & :
dTl’ pr3 dT pr A
2= A > =
A Y dr — 33X 1?2

Une seconde intégration fournit alors :
2
pr A
T(r)=—-—+——-——+208
(r) 6 T *

La température ne pouvant diverger a 'origine, la constante A est nécessai-
rement nulle.

2
De plus, T(r =a) =Ts = —% + B. On en déduit :
2 2
_ pa— P
Vr e [0,a], T(r)="Ts+ i o

3. Pour déterminer Ty, il faut utiliser la continuité du flux thermique a la
surface de la sphére :

T
O(r=a")=-A <> x 4ma® = h(Ts — T,) x 4ma>

dr r=a
T
Avec —\ <d> = -\ X (_ﬂ) = ZE, on en déduit :
dr r—a 3\ r=a 3
a a
%:Mﬂ—m & ﬂ:ﬂ+%
On peut alors en déduire la température au centre de la sphére :
2
pa  pa
Tr=0=T,+ =+ —
(’I" 0) et 3h + 6\

Sans surprise la température au centre est plus importante que dans 'air
(réaction nucléaire au sein de la boule) et ceci d’autant plus que la puissance
volumique est grande. A contrario, de meilleurs échanges a la surface (h
plus grand), ou une meilleure diffusion au sein de la boule (A plus grand)
permettent de mieux évacuer l’énergie et de diminuer la température au
centre.

4. Pour déterminer la puissance évacuée a la surface de la sphére, il est plus
simple d’utiliser le transfert conducto-convectif & la surface et ’expression
de la température Ty :

O(r = at) = dma’p, = 4ma® x h(Ty — T,) = 4wa’h x %

4
& |®(r=at)= §7ra3 X p

Cette puissance n’est en fait rien d’autre que la puissance fournie par les
réactions radioactives au sein de la sphére, produit de la puissance volumique
par le volume.

Ceci est logique : en régime permanent, I’énergie fournie doit étre évacuée,
sans cela le systéme s’échaufferait.

PhTr014. Fonte de la glace (***)

— Présentation : tant que le mélange est diphasé, la température au sein de la
sphére intérieure est bloquée & Ty = 273 K ; le régime est stationnaire, la notion
de résistance thermique est applicable.

Le systéme peut étre vu comme ’association série de deux résistances thermiques
en série, l'une Ry, 1 associée a la coquille sphérique isolante, 'autre Ry, o associée
au transfert conducto-convectif a la surface de la sphére extérieure. Pour la suite,
on pose Ty = T(Rz).

— On peut alors définir le schéma, équivalent suivant :

isolant
Rip i Ry 2
1 1
L  I—
T, T , T r T

— Démarche : une fois les résistances thermiques déterminées, on pourra en dé-
duire le flux thermique entrant et donc, a ’aide d’un bilan thermique, la quantité
de glace qui fond par unité de temps.

— Détermination des résistances thermiques

Pour le transfert conducto-convectif a la surface de la sphére extérieure, la loi de
Newton permet de faire apparaitre aisément la notion de résistance thermique,
rapport de la différence de température sur le flux thermique :
Rupg = T, — T(R2) _ T — T(R2) _ 1
’ ) s X 4mR3  h x 4w R}

Pour déterminer la résistance thermique de la coquille sphérique, on procéde de




la sorte :
— en régime permanent et en 'absence d’apports en volume, le flux thermique
est le méme & travers toute sphére centrée sur l'origine :
dr
jo(r) x dnr? = —)\d— x 4mr? = @y
r
— on intégre cette équation entre les deux extrémités de la coquille :
T(Rg) Ry _ & dr ¢
o [ 0
T(R1) R 477')\ T

1 1
(R2) = T(F1) = T3 [RQ RJ
— on en déduit la résistance thermique :
T(R)—-T(Ry) 1 [1 1
D ~4m\ |R1 Ry

La résistance thermique totale du dispositif est donc :

Rip, = Rip1 + Rypo =

Ripq =

1 n 1 1 1
h x 4m R% 47\ R1 R2
— Flux entrant : connaissant la résistance thermique du dispositif, et les tempé-

ratures aux extrémités, on en déduit le flux entrant :
<I>—T1_T0— Ty — T
Ry 1 1 [ 1 1 }

h><47rR§+47r)\ R Ry

— Bilan thermique : le flux d’énergie entrant contribue a faire fondre la glace;
pendant dt une énergie ®dt est fournie qui contribue & faire fondre une masse dm
de glace telle que :
dm x L f= ddt =
—~

par intégration

‘mXLf:q)XT‘

Application numérique :

298 — 2
o 98 — 273 130w

1 n 1 1 1
6 x 47 x 0,102 47 x 0,4 \ 0,01 0,1

1,0 x 107 x 335 x 10°
N 1,30

TA~2,6x10%s

T

PhTr015. Diffusion en géométrie sphérique, régime stationnaire (**)

1. A Dlextérieur de la sphére, le régime est permanent et il n’y a pas de création
de particules en volume ; le flux de particules qui traverse une sphére de rayon
r doit donc étre le méme que le flux de particules qui traverse une sphére
de rayon r + dr, ce flux est donc indépendant de r ce qui s’écrit :
(1) = jo(r) x 4mr? = @

Les particules associées a ce flux sont produites dans la sphére de rayon
Ry ; par unité de temps gg x é7TR8’ sont produites et le méme nombre doit
traverser une sphére de rayon r en dehors de la sphére, sinon les particules
s’accumuleraient or le régime est permanent, en conséquence :

Jo(r) x 4nr? = &y = g x §7TR8
Et donc :

. q0R3
pour r > Ry, jo(r) = 37"20

A Dintérieur de la sphére, on réalise un bilan de particules sur une durée dt,
entre deux sphéres de rayon r et r + dr :

— nombre de particules qui entrent pendant dt : ®(r)dt

— nombre de particules qui sortent pendant dt : ®(r + dr)dt

— nombre de particules créées dans le volume pendant dt : qo x 4wr2drdt

En régime permanent, la conservation du nombre de particules entre les
deux sphéres impose :
O (r)dt + qo x 4rridrdt = ®(r + dr)dt
dd(r)
dr

d
X dr = —qodrridr = o (jQ(r)47rr2) dr = qodnrdr

d
On obtient donc : — (j 2) = gor?
n l1en n ar (jQ(T)T ) qor
L’intégration de I’équation différentielle conduit & :
_qr A

2 QOTS
] =—+4+A = 3 =—4 =
r2jg(r) = 15—+ jolr) =55+ 5

Le vecteur courant ne pouvant diverger a ’origine, la constante A est néces-
sairement nulle.

-
pour r < Ry, jo(r)= q%

On remarque que le vecteur courant est continu pour r = Ry.

. Il reste a utiliser la loi de Fick pour déterminer la répartition des particules :

— Pour r > Ry :
3 3
_de _ qo Ry = dj _ qo Ry
dr 3r2 dr 3Dr?
On intégre cette équation compte tenu que n — 0 quand r — 400 :
_ qR}

- 3Dr

pour 7 > Ry, n(r)




— Pour r < Ry :

dn _ qor dn qor
dr 3 dr 3D
On intégre cette équation :
qor?
n(r) = ———= 4+ cste
(r) op T

On détermine la constante en utilisant la continuité de la densité particulaire
pour r = Ry :
wRy  qRj

- d
3DR, 6D one

+ cste

@O

pour r < Ry, n(r) = 5D

2
-
(5-5)

PhTr007. Evaporation de I’éther (***).

1.

N

En régime permanent et en 'absence d’apports en volume, le flux de parti-
cules est le méme en tout point de la colonne d’air. La section étant inva-
riante, il en est de méme du vecteur courant, ce qui s’écrit, en supposant la
loi de Fick vérifiée :
—D% = cste n(z) = Az+ B
On détermine les constantes d’intégration a I’aide des conditions aux limites :
n(h) =ny et n(H) = 0, ce qui conduit au systéme d’équations :
0=AH+ B et ny=Ah(t)+ B
On en déduit : B=—AH et A=mn;/(h(t) — H), c’est a dire :
z—H
h(t) — H

=

Vz € [h(t), H], |n(z) =n1 x

En z = h(t), la loi des gaz parfaits conduit a :

p _ OmmalT ONRT 6N R, ..

v N,V _av N,
Connaissant n(z) la densité particulaire, on peut en déduire le flux de par-
ticules & l’aide du vecteur courant :
dn n1 Dny S
b=-D—xS=-DxXx—"—5x%x§ = |&=_—"-">7"—
dz “hy—H "~ H — h(t)

On trouve 'équation sur h(t) en effectuant un bilan de particules sur 'éther
liquide encore présent.

A linstant ¢, il y a N(t) particules d’éther liquide, et N(t + dt) a l'instant
t + dt, la variation étant due au flux d’évaporation, ce qui s’écrit :

(b+dt) = N(t)— ®(O)dt =  dN = N(t +dt) — N(t) = ——2™5_ g

H— h(t)

J

h(t)

0

4.

On obtient le nombre de particules sous forme liquide & Uinstant ¢, en divi-
sant la masse de liquide par la masse d’une particule :
N(t):'uXSXh(t) dN:'uSNadh
MJN,

En égalisant les deux derniéres expressions, on obtient I’équation différen-
tielle portant sur h(t) :

MS./\/adh _ DmS DM

M  H—h(t) N,

On intégre alors cette équation entre l'instant initial et un instant quel-
conque :

dt dt

[H — h(t)] dh =

DnlM
MNa

Une fois la totalité de I’éther évaporée, h(7) = 0, I’équation précédemment
obtenue conduit a :
h2 DnlM ,uN ho ho
0¥ " T DM 2
Application numérique :
626 x 6,02 x 10?3 x 5,0 x 1072 x (0,10 — 0,025)
T =
1,5 x 107% x (0,58 x 105/(1,38 x 10723 x 293) x 74,1 x 103

2 WN,
7=8,86 x 10" 5, soit [7 ~ 1 jour |

g _

_bmM tdt = | H(h(t) — hg) — P

H —h|dh =
[ ] /LNa 0 2 2

t

. A T'aide du coefficient de diffusion et d’une analyse dimensionnelle, on peut

définir un temps caractéristique associé a la diffusion de I’éther sur une
hauteur typique H :
p_ H ~_H*  0,10°
= Taigs T T T T 15 % 105
Le temps de mise & I’équilibre par diffusion de l'ordre de 10 minutes est
court vis & vis du temps d’évolution du systéme de l'ordre d’une journée.
L’hypothése de I’état quasi-stationnaire est bien validée.

& =6,7x10%s

PhTr029. Marche au hasard et diffusion dans les solides (**)

1.

L’atome sautant de case en case, si 'atome est en x,, & l'instant ¢ + 7, il
devait nécessairement étre en x,_1 ou en x,y1 & linstant t; partant de
ZTp—1 ou de xp41, il & une chance sur deux de sauter du bon c6té, donc :

1 1
p(xp, t+7) = 3 % p(Tn—1,t) + 3 % P(Tnt1,t)




2. En passant a la limite continue, la relation précédente s’écrit :

ot +7) = % (@ —a,t) + p(e + a, )

On effectue alors les développements limités indiqués :

0
*x p(z,t +7) = p(x,t) + 7'8—1;
op a®d?p
* t) >~ T — 4+ ==
p(r+a,t) ~p(z )+agx+ 22(3%52
p  a p
* plz —a,t) ~ p(z,t) — a— + — —=
p(@ —a,t) = p(?) a8x+ 2 Ox2
En reportant dans I’équation liant les probabilités, on en déduit que les
Ip

termes en p(z,t) et en disparaissent pour donner :

oz

@ B a’>  0%p

= X —=
ot 21 Ox2

2

a
On obtient une équation de diffusion avec | D = o |
T

PhTr090. Fonte d’un glagon (***)

1. Si on néglige la capacité thermique du liquide, il ne peut accumuler d’énergie

thermique, en conséquence le flux d’énergie qui traverse une sphére de rayon
r est le méme que celui qui traverse la sphére de rayon r 4 dr. Si on appelle
P ce flux et en utilisant la loi de Fourier au sein du fluide pour lequel on
néglige les phénomeénes de convection :

dT dr Dy
Dy =(r) =4nr’ x = A— & —A—=—3
0 (r) = dmr x dr dr  4mr?
Ce qui donne par intégration :
D
Vr > R(t), T(r,t)= A
r ( )7 (r7 ) 47‘(‘)\7‘ +

Les conditions aux limites imposent 7' — Ty quand r — +oo et T(r =
R*(t)) = Ty; ces deux conditions permettent d’en déduire les constantes
®q et A, ce qui donne finalement :

Vor> R(t), T(r, t) = ]%T('t) [Tf — To} + Ty

. La différence de température entre le glacon et ’eau entraine un flux ther-
mique du liquide vers le glagon. Cette énergie regue par le glagon le fait
fondre. On évalue le flux thermique en r = RT(t) grace a expression de la

température dans ’eau précédemment obtenue.
Pendant une durée dt, la masse du glagon varie de dm < 0 telle que :

drl Ty —To| R(t
dm x 1y = @ x dt = —\= x dmr?dt = =\ x 4mr? x <—[f20]()> dt
r r
dm x 1y = X x 4w R(t) [Ty — To] dt
La perte de masse dm est associée & une couche sphérique d’aire 47 R2(t) et
d’épaisseur dR qui disparait donc :

ATy — T,
ps X ATR2(1)dR x Iy = A x 4w R(t) [Ty — Tyl dt & | R(t)dR = (pfxlo)dt
s 2 Uf
2X(Ty — T
3. Ceci conduit par intégration & : R(t)— R = (fxlO) x t et finalement :
Ps f
2X(To — T
R(t)ng?)—i( 0 =T oy
Ps X lf
La fonte compléte du glagon correspond a R(ty) = 0, c’est a dire :
Ripsly
tp =0l
ATy — Ty)

Avec un glagon de 1,0 cm de rayon, et une température de 15°C, une appli-
cation numérique conduit a :

p_ 1x107%x0,92 x 10° x 333 x 10°
I= 0,6 x 15
La durée apparaitre quelque peu surestimée, les phénoménes de convection

dans ’eau n’ont pas été pris en compte et augmentent dans une situation
réelle les échanges thermiques.

~1702s =

tf%1/2h

PhTr087. Survie dans un igloo (**)

En régime permanent, la puissance thermique P dégagée par I'individu doit com-
penser les pertes dues au flux sortant ®g, soit P = dy.

Il faut maintenant évaluer le flux sortant ou ce qui revient au méme la résistance
thermique de l'igloo.

Au sein de la neige compactée, ’absence d’apports en volume et le régime perma-
nent assurent que le flux est indépendant de la distance a 'axe :

O(r+dr)=o(r) = Py



Le vecteur courant thermique est purement radial au sein de la neige compactée,
le flux s’obtient en intégrant sur la demi-sphére :

q>0://EJQ.d§://EjQ(r)d5:jQ(r) //EdS:jQ(r) « 2mr?

L’application de la loi de Fourier conduit & :

dr

dl —®g
A— x 212 =& =
/\dr X 27r 0o & d 52

On intégre alors sur ’épaisseur de la neige compactée :
Teaxt R+e 7@ d'l" q)o 1 1
dT = T s T —T = —— | — =
/Tmt /R 2T\ r? ) [R +e R]
Sachant que ®¢9 = P, on en déduit finalement :
27r>\(Text - CZjmt) - 1 1

P ~R+e R
Il reste alors & isoler ’épaisseur e, avec AT = Tt — Tt -
11 2w x (—AT) N B 1 R
Rte R P ¢S T 2mAT
R P

Application numérique :

1
€= 1 2xx005x20 '+ =
1,0 50
Remarque : I'épaisseur étant relativement faible vis a vis du rayon, on peut ap-
procher I'expression de la résistance thermique par un modéle & une dimension :

Ry,

ce qui donne la formule simplifiée pour ’égalité du flux ther-

T A x27R?’
mique sortant et de la puissance fournie :
2 2
P:E:ATX)\XQWR N e:ATXQﬂ’R X)\%13cm
Ry, e P

On constate que ce calcul approché donne un résultat trés proche du calcul complet
et qu’il représente donc une bonne alternative.




