
Lycée Naval, Spé 2.

Devoir surveillé n◦03 (correction)

1 Résolution de problème : risque d’hypothermie

D’après un sujet proposé par Alain Favier, lycée Champollion.

Présentation du problème.

Il s’agit de réaliser un bilan énergétique du plongeur dans l’eau. La température
du plongeur évolue sous l’effet de deux phénomènes antagonistes :

— les pertes par rayonnement et convection et la diffusion thermique au sein
de la peau et de l’éventuelle combinaison ;

— les apports du métabolisme.
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En supposant les parois de la peau et de la combinaison suffisamment « fines », on
considère que l’ARQS est applicable et que le temps caractéristique d’évolution
de la température du corps humain est grand devant le temps caractéristique
d’évolution de la température au sein de la peau ou de la combinaison. La notion
de résistance thermique est alors applicable.

Le flux thermique traverse la peau puis l’éventuelle combinaison et enfin les résis-
tances thermiques associées au phénomène de convection et de rayonnement, ces
deux dernières étant en parallèles :
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Par la suite, on considère un plongeur de masse m = 75 kg. Pour simplifier on
assimile le plongeur à un cylindre de hauteur H = 1, 75 m et de circonférence
moyenne C = 80 cm, c’est à dire une surface latérale équivalente de S = 1, 4 m2.
Une évaluation plus précise nécessiterait par exemple de décomposer le corps
humain en plusieurs cylindres : un pour le tronc, deux pour les jambes et deux
pour les bras.

Mise en œuvre et calculs.

→ Résistances thermiques :

— la résistance équivalente vaut Req = Rpeau +Rcombi +
RconvRray
RconvRray

;

— l’épaisseur e de la combinaison étant très faible vis à vis de la taille de
l’individu, on peut appliquer le modèle du conducteur plan pour estimer la
résistance de la combinaison : Rcombi =

e

λS
;

— le flux thermique de rayonnement permet d’accéder à la résistance de rayon-
nement :

Φray = pRS = aT 3
ext(T − Text)S ⇒ Rray =

T − Text
Φray

=
1

aT 3
extS

— le flux thermique de convection permet d’accéder à la résistance de convec-
tion :

Φconv = pcS = h(T − Text)S ⇒ Rconv =
T − Text

Φconv
=

1

hS

→ Bilan thermique :

Pour le corps humain de capacité thermique C = mccorps et de température Tcorps,
on applique le premier principe de la thermodynamique entre deux instants voisins
t et t+dt. Le corps humain subit des pertes via la résistance thermique équivalente
et des apports du fait d’une puissance métabolique Pm :

mccorpsdTcorps = Pmdt− Tcorps − Text
Req

dt

Ce qui conduit à l’équation différentielle :

τ
dTcorps

dt
+ Tcorps = Text +ReqPm avec τ = mccorpsReq

Cette équation différentielle admet pour solution avec Tcorps(t = 0) = T0 = 37◦C :

Tcorps(t) = (T0 − Text − PmReq)e−t/τ + Text + PmReq

→ Début de l’hypothermie :

Il faut alors déterminer l’instant thyp vérifiant Tcorps(thyp) = Thyp, c’est à dire :
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thyp = τ ln

(
T0 − Text − PmReq
Thyp − Text − PmReq

)
Applications numériques.

On travaille avec Thyp = 34◦C et une combinaison d’épaisseur e = 5, 0 mm.

— Rcombi =
5, 0× 10−3

0, 20× 1, 4
≈ 0, 018 K ·W−1 ;

— Rconv =
1, 0

10× 1, 4
= 0, 071 K ·W−1 ;

— Rray =
1, 0

22, 8× 10−8 × 2913 × 1, 4
= 0, 13 K ·W−1 ;

— sans combinaison : R1
eq = 0, 030 +

0, 071× 0, 13

0, 071 + 0, 13
= 0, 076 K ·W−1

— avec combinaison : R2
eq = 0, 018 + 0, 030 +

0, 071× 0, 13

0, 071 + 0, 13
= 0, 094 K ·W−1

— la puissance métabolique est obtenue en divisant l’énergie journalière par la
durée d’une journée :

Pm =
107

24× 3600
= 116 W

Ce qui donne pour la durée recherchée :
— sans combinaison :

t1hyp = 75× 3, 5× 103 × 0, 076× ln

(
37− 18− 116× 0, 076

34− 18− 116× 0, 076

)
≈ 2 h

— avec combinaison :
t2hyp = 75× 3, 5× 103 × 0, 094× ln

(
37− 18− 116× 0, 094

34− 18− 116× 0, 094

)
≈ 3 h 10 min

On constate que la combinaison augmente sensiblement l’instant d’apparition de
l’hypothermie.

Si l’individu nage, on peut penser qu’il augmente sa dépense énergétique, l’ap-
port thermique est plus important ce qui lui permet de repousser la durée avant
hypothermie.

2 Mesure de la fréquence cardiaque (CS PC 2014)

II. A.

1. On représente les équivalents basses fréquences (le condensateur se comporte
comme un interrupteur ouvert) et hautes fréquences (le condensateur se
comporte comme un fil) du montage :
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— en basse fréquence : aucun courant ne s’écoule dans les résistances R2,
en conséquence s1 = e1 ;

— en haute fréquence : les condensateurs se comportant comme des fils
s1 = e1.

Le filtre laissant passer les basses fréquences et les hautes fréquences, on
peut penser à un filtre réjecteur.

2. A.N. :
f0 =

1

2π × 2× 16× 103 × 0, 1× 10−6
⇒ f0 ≈ 50 Hz

Le signal à extraire étant faible, il s’agit d’éliminer tous les signaux
parasites en particulier le 50 Hz, issu du réseau électrique.

II. B.

1. Il s’agit de ne pas prélever de courant en sortie du filtre réjecteur,
pour cela, on utilise un montage suiveur reliant la sortie du filtre réjecteur
et l’entrée du filtre passe-bande.
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2. La rétroaction sur la borne inverseuse permet de faire l’hypothèse d’un
régime linéaire.

La structure {C3, R3} en amont de l’ALI est un passe-haut, la structure
{R4, C4} en aval de l’ALI est un passe-bas. La combinaison d’un passe-
bas et d’un passe-haut avec des fréquences de coupure adaptées
génère un passe-bande.

3. Les rythmes cardiaques limites exprimés en hertz valent 60/60 = 1, 0 Hz et
200/60 ≈ 3 Hz et sont donc bien compris dans la bande-passante. On
aurait pu envisager une fréquence un peu plus faible pour la coupure haute
fréquence.

4. Pour un ALI idéal en régime linéaire v− = v+ = VD, l’application de trois
diviseurs de tension conduit à :

— passe-haut :
V D

e2
=

jR3C3ω

1 + jR3C3ω

— amplificateur non-inverseur :
V E

V D

= 1 +
R6

R5

— passe-bas :
s2
V E

=
1

1 + jR4C4ω

C’est à dire pour la fonction de transfert de l’ensemble :

H2 =
s2
e2

=
s2
V E

× V E

V D

× V D

e2

⇔ H2 =
jR3C3ω

1 + jR3C3ω
×
(

1 +
R6

R5

)
× 1

1 + jR4C4ω

5. La fréquence de coupure du passe-bas fc2 est suffisamment élevée vis à vis
de celle du passe-haut fc1 (f2/f1 = 300) pour supposer que la fonction de
transfert du passe-haut est unitaire à la coupure haute-fréquence et récipro-
quement lorsqu’on réalise l’étude basse-fréquence sur le passe-haut.
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La fréquence de coupure du passe-bas est fc2 =
1

2π
× 1

R4C4
, en retenant

R4 = 1, 0 kΩ , on en déduit :

C4 =
1

2π ×R4fc2
=

1

2π × 1, 0× 103 × 150
⇒ C4 = 1, 1 µF

La fréquence de coupure du passe-haut est fc1 =
1

2π
× 1

R3C3
, en retenant

R3 = 10 kΩ , on en déduit :

C3 =
1

2π ×R3fc1
=

1

2π × 10× 103 × 0, 50
⇒ C3 = 32 µF

6. La partie « amplificateur non-inverseur » permet d’amplifier les signaux
dont les fréquences sont dans la bande passante.

II. C.

1. Le circuit proposé en figure 8 est un comparateur simple. En consé-
quence :

— pour e3(t) > V0, s3(t) = +Vsat ;
— pour e3(t) < V0, s3(t) = −Vsat.

Ce qui donne pour la réponse en sortie :
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Du fait des fluctuations du signal d’entrée dans la zone V2, le signal de sortie
présente un double créneau au lieu d’un créneau unique, ce qui va fausser
la mesure du compteur. Le dispositif n’est pas adapté à la mesure de
la fréquence cardiaque.

2. L’absence de rétroaction sur la borne inverseuse assure que l’ALI
fonctionne en régime de saturation.

Appliquons une loi des nœuds en terme de potentiels à l’entrée non-
inverseuse :

e4(t)− v+
R7

=
v+ − s4(t)

R8
⇔ v+ =

R8e4(t) +R7s4(t)

R7 +R8

— s4(t) = +Vsat nécessite ε = v+ − V0 > 0, c’est à dire v+ > V0 et grâce à
la relation précédente :

R8e4(t) +R7Vsat
R7 +R8

> V0 ⇔ e4(t) > U1 avec U1 =
V0(R7 +R8)−R7Vsat

R8

— s4(t) = −Vsat nécessite ε = v+ − V0 < 0, c’est à dire v+ < V0 et grâce à
la relation précédente :

R8e4(t)−R7Vsat
R7 +R8

< V0 ⇔ e4(t) < U2 avec U2 =
V0(R7 +R8) +R7Vsat

R8

U1 > 0 ⇔ V0 >
R7Vsat
R7 +R8

.

On en déduit le cycle du montage à d’hystérésis qui montre les bascule-
ments de la tension de sortie sachant que U2 > U1 :

Vsat

Vsat

s4 (t)

e4 (t)

U1 U2

−

On en déduit l’évolution des tensions au cours du temps :

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
t (s)

Vsat

E0

U1

U2

E0

+Vsat

s4(t)
e4(t)

3. L’idée est de retenir U1 et U2 comme représentées sur la courbe suivante :
e3

s3

Vsat

−Vsat

V2

V3O1U1

U2

t

(t)

t

(t)

Le montage à hystérésis est moins sensible aux fluctuations que le compa-
rateur simple.
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3 Sismographe (adapté de CS TSI 2009)

1. À l’équilibre les forces se compensent ce qui donne en projection sur l’axe
Ox :

0 = −mg − k(Xeq − l0) ⇔ Xeq = l0 −
mg

k
(1)

2. Dans le référentiel terrestre supposé galiléen, on applique la relation fonda-
mentale de la dynamique à la masse, ce qui donne en projection sur l’axe
Ox (en exploitant la relation à l’équilibre) :

mẌ = −mg − k(X − l0)− fẊ ⇒︸︷︷︸
(1)

mẌ = −k(X −Xeq)− fẊ

C’est à dire avec x(t) = X(t)−Xeq : ẍ+
f

m
ẋ+

k

m
x = 0 .

3. On réécrit l’équation sous forme canonique : ẍ+2λẋ+ω2
0x = 0. Le graphique

indique un régime pseudo-périodique, les solutions de l’équation caractéris-
tiques sont :

r± = −λ± j
√
ω2
0 − λ2

La solution générale de l’équation est de la forme :

x(t) = e−λt [A cos (ωt) +B sin (ωt)] avec ω =
√
ω2
0 − λ2

Compte tenu des conditions initiales : x(0) = x0 et ẋ(0) = 0, on en déduit
le système d’équations :

x0 = A et 0 = −λ×A+B × ω

C’est à dire : x(t) = x0e
−λt
[
cos (ωt) +

λ

ω
sin (ωt)

]
.

4. L’amortissement présentant au moins 5 ou 6 oscillations bien visibles, on
peut assimiler la pseudo-pulsation ω observée sur le graphique à la pulsation
propre ω0 (λ2 � ω2

0).

Sur le graphique, on observe 5 périodes en 3,0 s, c’est à dire :

ω0 ≈ ω =
2π

T
=

2π

3, 0/5
⇒ ω0 ≈ 10 rad · s−1

Considérons d’autre part l’évolution du signal sur une période temporelle
T = 2π/ω :

x(T ) = x0e
−λT

[
cos (ωT ) +

λ

ω
sin (ωT )

]
= x0e

−λT ⇒ λ =
1

T
× ln

(
x0
x(T )

)
Lors de la première oscillation, le signal passe d’une amplitude de 5, 0 mm
à 2, 7 mm :

λ =
5

3, 0
× ln

(
5

2, 7

)
⇒ λ = 1, 0 s−1

On a bien λ2 � ω2
0, On en déduit :

f = 2mλ = 2× 0, 100× 1, 02 ⇒ f = 0, 21 kg · s−1

k = mω2
0 = 0, 100× 10, 42 ⇒ k = 11 N ·m−1

5. Commençons par réaliser un schéma de la situation :
M1

g

O1

k X(t)

uX

s(t) O

Dans le référentiel galiléen lié au point O, on applique la relation fondamen-
tale de la dynamique au miroir. On constate que l’accélération du miroir
s’écrit alors :

~a(M1) =
d2−−→OM1

dt2
=

d2−−→OO1

dt2
+

d2−−−→O1M1

dt2
= s̈(t)~ux + ẍ(t)~ux

Les forces étant identiques à celles de la question 2, il s’agit donc d’ajouter
−s̈(t) = ω2

1s0 cos (ω1t) dans le membre de droite pour obtenir :

ẍ+ 2λẋ+ ω2
0x = ω2

1s0 cos (ω1t)

6. En utilisant la notation complexe, on en déduit :(
−ω2

1 + 2jω1λ+ ω2
0

)
x = ω2

1s0 ⇒ Y (jω1) =
ω2
1

−ω2
1 + 2jω1λ+ ω2

0

7. Y =
ω2
1√

(ω2
0 − ω2

1)2 + 4ω2
1λ

2
; lim
ω1→+∞

Y → 1

Pour ω1 � ω0, l’inertie du bloc {masse,ressort} s’exprime et le bloc ne peut
osciller à de telles fréquences, le miroir reproduit fidèlement les mouvements
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du sol.

Le module de la fonction de transfert est nul à fréquence nulle et tend vers
1 à haute fréquence ; pour savoir si la fonction passe par un maximum, on
réécrit le module :

Y (ω1) =
1√(

ω2
0

ω2
1

− 1

)2

+
4λ2

ω2
0

× ω2
0

ω2
1

Avec u =
ω2
1

ω2
0

, on se ramène à l’étude de la fonction :

f : u→
(

1

u
− 1

)2

+
4λ2

ω2
0

1

u
⇒ f ′(u) = 2× −1

u2
×
(

1

u
− 1

)
− 1

u2
× 4λ2

ω2
0

La dérivée s’annule en
1

u
= 1− 2λ2

ω2
0

⇔ ω2
1 =

ω2
0

1− 2λ2

ω2
0

À condition que λ <
ω0√

2
.

8. Compte tenu de la question précédente :

0 2 4 6 8 10
1/ 0

0.00
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0.50
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1.25

1.50

1.75

Y

= 2 0
= 0/3

Soit ω1 la pulsation typique d’excitation, on doit choisir ω0 � ω1 de ma-
nière à se situer dans l’asymptote haute fréquence pour laquelle l’ensemble
des excitations soient reproduites fidèlement et identiquement quelle que
soit la fréquence.

9. La rétroaction sur la borne inverseuse permet de supposer un régime linéaire,
c’est à dire pour l’ALI idéal : v− = v+ = 0.

v
e

v
s

i
1

i
2

i
3

i
4

i
5

R/a

R

−

+

2RC
CM

N

On applique alors la loi des nœuds en terme de potentiels au point M :
ve − vM

R
= (vM − vs)× jCω + (vM − 0)× jCω +

vM − 0

R/a

⇔ ve − vM = vM × 2jRCω − vs × jRCω + avM

Par ailleurs une loi des nœuds appliquée en N donne :

(vM − 0)× jCω =
0− vs

2R
⇔ vs = −2jRCωvM

En éliminant vM des deux lois des nœuds, on en déduit :

H(jω) =
vs
ve

=
−1

1 + j

(
RCω − 1

RCω

(
1 + a

2

))
Par identification, on en déduit :

Q

Ω
= RC et QΩ =

1

RC

(
1 + a

2

)
, c’est à

dire :

Q =

√
1 + a

2
et Ω =

1

RC

√
1 + a

2

10. La pulsation de résonance Ω du filtre passe-bande doit être positionnée sur
l’harmonique de rang N ce qui impose :

Ω = Nω1 =
1

RC

√
1 + a

2

D’autre part, on ajuste la valeur de a pour avoir un facteur de qualité

suffisamment élevé éliminant les autres fréquences Q =

√
1 + a

2
� 1 .

Ces deux contraintes sont imposées en ajustant les valeurs de RC et a.
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