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Champ électrique. Régime stationnaire.

Dans ce chapitre nous nous intéressons aux propriétés topographiques du champ
électrique en régime stationnaire avec, pour objectif, de déterminer l’expression
du champ dans des situations de haute symétrie. En régime stationnaire, le champ
électrique étant créé par la présence de charges électriques, nous commençons par
une étude des distributions de charge.

1 Charge électrique

1.1 Distribution de charges

→ Distribution volumique

L’approximation des milieux continus permet de définir une densité volumique
de charge ou charge volumique telle que :

ρ =
δq

dτ
en C ·m−3

avec dτ un volume « petit » à l’échelle macroscopique et « grand » à l’échelle
microscopique et δq la charge électrique contenue dans ce volume dτ .

→ Distribution surfacique
Si une des dimensions est négligeable devant les deux autres, on définit une den-
sité surfacique de charge ou charge surfacique telle que :

σ =
δq

dS
en C ·m−2

Justification :

dS

h

δq = ρdτ = ρ(hdS) = (ρh)dS = σdS
Le modèle surfacique correspond au cas limite pour lequel h→ 0 et ρ→∞ avec
σ = ρh = cste.

→ Distribution linéique
Si deux des dimensions sont négligeables devant la troisième, on définit une den-
sité linéique de charge ou charge linéique telle que :

λ =
δq

dl
en C ·m−1

charge   qδ

dl

1.2 Symétries et invariances

Symétrie plane

Une distribution de charges admet un plan de symétrie Π, si la distribution de
charges, obtenue par symétrie par rapport à Π, lui est en tout point identique.

Exemple :

P

q

P’

q

(Π)

Antisymétrie plane

Une distribution de charges admet un plan d’antisymétrie Π?, si la distribution
de charges, obtenue par symétrie par rapport à Π?, lui est en tout point opposée
(charges de signe opposé).

Exemple :

Π∗

P

q

P’

(     )

−q

1.3 Invariance par translation

Une distribution de charges est invariante par translation selon un axe ∆ si elle
reste inchangée par toute translation le long de cet axe.

Remarque : une telle distribution est d’extension infinie selon l’axe ∆.
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1.4 Invariance par rotation

Une distribution de charges est invariante par rotation autour d’un axe ∆ si elle
reste identique lors d’une rotation quelconque autour de cet axe.

Exemple : une spire d’axe Oz portant une charge linéique uniformément répartie.

O

z

P

P’
λ

2 Symétrie du champ électrostatique

2.1 Principe de Curie

Le principe de symétrie de Pierre Curie affirme que « lorsque certaines causes
produisent certains effets, les éléments de symétrie des causes doivent se retrouver
dans les effets produits ». Dit autrement les effets sont au moins aussi symétriques
que les causes qui les ont engendrés.

2.2 Symétrie plane

Exemple : la carte de champs ci-dessous représente les lignes de champ électrique
créées par un doublet de deux charges positives et identiques.

Généralisation :

Soit Π un plan de symétrie de la distribution de charges :−→
E (M ′) = symΠ(

−→
E (M)) avec M ′ = symΠ(M)

Conséquence importante : en un point d’un plan de symétrie de la distribution
de charges, le champ électrique est contenu dans ce plan.

E(M)

q

P P’

q

Π

M

q

P P’

q

Π

M M’

E(M) E(M’)

2.3 Antisymétrie plane

Exemple : la carte de champs ci-dessous représente les lignes de champ électrique
créées par un doublet de deux charges de valeur opposée.

Généralisation :

Soit Π? un plan d’antisymétrie de la distribution de charges :−→
E (M ′) = −symΠ?(

−→
E (M)) avec M ′ = symΠ?(M)

Conséquence importante : en un point d’un plan d’antisymétrie de la distribution
de charges, le champ électrique est normal à ce plan.

E(M)

q

P P’

Π

M

q

P P’

Π

M

E(M)
M’

−q −q
* *

E(M’)
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2.4 Invariance par translation selon un axe

Pour une distribution de charges invariante par translation selon un axe ∆, le
champ électrique en un point quelconque M de l’espace est indépendant de la
coordonnée associée à l’axe ∆.

2.5 Invariance par rotation autour d’un axe

Pour une distribution de charges invariante par rotation autour d’un axe ∆, la
norme du champ électrique en un point quelconque M de l’espace est indépen-
dante de la coordonnée angulaire associée à la rotation autour de l’axe ∆.

2.6 Exemple : cylindre uniformément chargé en surface

On considère un cylindre creux infini d’axe Oz et de rayon R possédant une charge
surfacique σ uniforme sur toute la surface.

M(r,   ,z)θ
Π

2

Π
1

uz

σ

→ Direction du champ électrique :

Π1 = (M,~ur, ~uz) et Π2 = (M,~ur, ~uθ) sont des plans de symétrie de la distribution
de charges. ~E(M) est contenu dans ces deux plans et donc dans leur intersection :

~E(M) = Er(r, θ, z)~ur

→ Dépendance des composantes en fonction des coordonnées d’espace :

La distribution est invariante par translation selon Oz et par rotation d’angle θ
autour de Oz. La composante du champ électrique est donc indépendante de z
et θ :

~E(M) = Er(r)~ur

3 Équations de Maxwell

Les équations de Maxwell régissent l’évolution locale du champ électromagnétique.

3.1 Énoncé (postulat)

? Équation de Maxwell-Gauss (M-G) : div ~E =
ρ

ε0

? Équation de Maxwell-Thomson (M-T) : div ~B = 0

? Équation de Maxwell-Faraday (M-F) : −→rot ~E = −∂
~B

∂t

? Équation de Maxwell-Ampère (M-A) : −→rot ~B = µ0

(
~j + ε0

∂ ~E

∂t

)

avec ε0 la permittivité du vide et µ0 la perméabilité du vide vérifiant ε0µ0 = 1/c2,
c étant la célérité de la lumière dans le vide.

Remarques :
? Les équations de Maxwell sont équivalentes à un système de huit équations
locales scalaires ; ce sont des équations aux dérivées partielles linéaires et cou-
plées.
? Les équations (M-G) et (M-A) relient le champ électromagnétique à ses sources
ρ et ~j.
? Les équations (M-T) et (M-F) expriment les propriétés intrinsèques du champ
électromagnétique.

3.2 Les équations de l’électrostatique

En régime stationnaire, les équations se découplent, on peut donc étudier sépa-
rément les caractéristiques des champs électrique et magnétique. En particulier
pour le champ électrique :

? Équation de Maxwell-Gauss (M-G) : div ~E =
ρ

ε0

? Équation de Maxwell-Faraday (M-F) : −→rot ~E = ~0

Dans toute la suite, nous allons étudier la signification de ces deux équations et les
conséquences sur les caractéristiques du champ électrique en régime stationnaire.
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4 Caractéristique du champ électrostatique

4.1 Potentiel scalaire électrique

? Comme −→rot ~E = ~0, il existe V , appelé potentiel (scalaire) électrostatique et
défini à une constante près, tel que :

~E = −
−−→
gradV

? La circulation du champ électrique s’exprime alors comme une différence de
potentiel électrique : ∫ B

A

~E.d~l = VA − VB

Justification : ∫ B

A

~E.d~l =

∫ B

A
−
−−→
gradV.d~l = −

∫ B

A
dV = VA − VB

Conséquence :
En régime stationnaire, une ligne de champ électrique ne peut pas se refermer
sur elle-même.

Justification : imaginons un contour C fermé allant de A à A et supposons que ce
contour soit une ligne de champ. Si une telle ligne de champ existe, par définition,
le champ ~E et le vecteur élémentaire d~l dirigeant le contour, sont, en tout point,
parallèles et de même sens. Le théorème de positivité assure :∮

C
~E.d~l > 0

En contradiction évidente avec le fait que
∮
C
~E.d~l = VA − VA = 0. L’hypothèse est

réfutée.

4.2 Lignes de champ et surfaces équipotentielles

Définitions

Une surface équipotentielle est définie par l’ensemble des points M vérifiant
V (M) = cste.

Les lignes de champ sont les lignes tangentes au champ électrostatique en
tout point et orientées par ce champ.

Propriétés

→ Deux lignes de champ ne peuvent pas se couper en un point où le champ
électrostatique a une valeur finie non nulle.

→ Pour que deux lignes de champ se coupent en un point, il faut soit que le
champ électrostatique soit nul en ce point soit qu’il ne soit pas défini (présence
d’une charge).

→ Les lignes de champ sont perpendiculaires aux surfaces équipotentielles et orien-
tées dans le sens des potentiels décroissants.

Démonstration : considérons deux points M et M ′ infiniment voisins appartenant
à une même équipotentielle V (M) = V (M ′) = V0

V(M)=V0

dl

équipotentielle

M
M’

E

ligne de champ

V (M ′)− V (M) = dV =
−−→
gradV.d~l = − ~E(M).d~l

or V (M ′) = V (M) ⇒ ∀ d~l ∈ à la surface équipotentielle, ~E ⊥ d~l

Considérons une ligne de champ rencontrant deux surfaces équipotentielles :

V
1

V
2

E

Le long de la ligne de champ
∫ 2

1

~E.d~l > 0 (car ~E.d~l > 0)

or
∫ 2

1

~E.d~l = −
∫ 2

1
dV = V1 − V2 donc V1 > V2

Premier exemple : considérons les lignes de champ et équipotentielles créées par
une charge ponctuelle (Cf. page suivante).

→ Au voisinage d’une charge positive, toutes les lignes de champ « sortent » ; au
voisinage d’une charge négative, toutes les lignes de champ « entrent ».

→ Au voisinage d’un point de champ nul, les deux types de lignes de champ sont
présentes (Cf. troisième exemple).
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V1
V2

V3

q>0

q

q<0

Va
Vb

Vc

q

Deuxième exemple : équipotentielles et lignes de champ d’un doublet {−q,+q}.

Troisième exemple : équipotentielles et lignes de champ de trois charges identiques
placées au sommet d’un triangle équilatéral.

4.3 Équation de Poisson

Le potentiel électrostatique vérifie l’équation de Poisson :

∆V +
ρ

ε0
= 0

Dans le vide, cette équation se simplifie selon ∆V = 0 (équation de Laplace).

Démonstration : on combine l’équation de Maxwell-Gauss avec ~E = −
−−→
gradV :

ρ

ε0
= div ~E = div

(
−
−−→
gradV

)
= −∆V

Exemple d’application :

→ On considère un condensateur constitué de deux plaques parallèles dont les
dimensions latérales sont très grandes vis à vis de l’espacement entre les plaques.

V
1

V
2

u
x

L

→ Le système est invariant par translation selon les axes Oy et Oz, en conséquence
V (x, y, z) = V (x).

→ Les plaques portent des charges électriques à leur surface, en revanche les
charges sont absentes dans le volume entre les armatures :

∆V = 0 ⇒ ∀x ∈ ]0, L[ ,
d2V

dx2
= 0

Compte tenu des conditions aux limites, V (0) = V1 et V (L) = V2, on en déduit :

V (x) = V1 +
V2 − V1

L
x

On peut alors déterminer le champ électrique entre les armatures :

~E = −
−−→
gradV ⇒ ~E =

V1 − V2

L
~ux
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5 Théorème de Gauss

5.1 Énoncé

Le flux du champ électrostatique à travers une surface (Σ) fermée et orientée
vers l’extérieur est égal à la charge totale Qint contenue dans le volume inté-
rieur à cette surface divisée par ε0 :∫����∫

Σ

~E.
−→
dS =

Qint
ε0

→ Signification :

q4

q2

q3

q1 Φ
Σ1

Φ
Σ

q2 q4

ε
ο

=
2

=
+

Σ

Σ1

2

le flux ne dépend que des charges intérieures 
et non de la forme de la surface fermée

→ Justification :
Le théorème de Gauss est l’expression intégrale de la loi locale de Maxwell-Gauss :∫����∫

Σ

~E.
−→
dS =

∫∫∫
V
div ~E dv =

∫∫∫
V

ρ

ε0
dv =

Qint
ε0

5.2 Application au calcul d’un champ électrostatique

Le théorème de Gauss est toujours vrai ; il n’est adapté au calcul du champ
électrostatique que si la distribution de charges possède une symétrie élevée.

Méthode

? Étude des symétries et invariances : déterminer la direction du champ et la dé-
pendance du champ vis à vis des coordonnées.
? Choix de la surface de Gauss : choisir une surface Σ permettant un calcul élé-
mentaire du flux du champ électrique.
? Appliquer le théorème de Gauss et obtenir ainsi

−→
E .

Ex. 1 : champ créé par une charge ponctuelle

On considère une charge ponctuelle q située à l’origine du système de coordonnées.

→ Étude des symétries et invariances :

? Les plans (M,~ur, ~uθ) et (M,~ur, ~uϕ) sont des plans de symétrie de la distribution ;
~E(M) est contenu dans ces deux plans et donc dans leur intersection :

~E = Er(r, θ, ϕ)~ur

? La distribution de charges est invariante par toute rotation d’angles θ et ϕ, la
composante du champ électrique ne dépend que de la coordonnée r :

~E = Er(r)~ur

O
q

Σ

M

→ Choix de la surface de Gauss :

En choisissant une sphère de rayon r centrée sur l’origine, la norme du champ
électrique est uniforme sur la sphère, de plus le champ et le vecteur surface sont
colinéaires.

→ Application du théorème de Gauss :

ΦΣ =

∫����∫ ~E.d~S =

∫����∫ Er(r)~ur.d~S = Er(r)

∫����∫ dS = Er(r)4πr
2

La charge contenue dans toute sphère centrée sur O est égale à q, on en déduit :
~E =

q

4πε0r2
~ur

→ Potentiel électrique scalaire :

q

4πε0r2
~ur = −

−−→
gradV ⇒ dV

dr
= − q

4πε0r2
⇒ V (r) =

q

4πε0r

Pour obtenir la dernière expression, on a fait le choix habituel d’un potentiel nul
à l’infini pour une distribution d’extension finie.

Avec un choix de potentiel nul à l’infini, le champ électrique et le potentiel créés
par une charge q à l’origine du système de coordonnées ont pour expression :

~E =
q

4πε0r2
~ur et V (r) =

q

4πε0r
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Ex. 2 : boule uniformément chargée en volume (symétrie sphérique)

On considère une boule de centre O et de rayon R uniformément chargée en

volume, charge volumique ρ, soit une charge totale Q = ρ× 4

3
πR3.

→ Étude des symétries et invariances ; surface de Gauss :

Les symétries et invariances sont identiques à celles de la charge ponctuelle, par
conséquent :

~E = Er(r)~ur

et on retient comme surface de Gauss une sphère de rayon r centrée sur l’origine

→ Application du théorème de Gauss :

ΦΣ = Er(r)× 4πr2

Il reste à déterminer la charge contenue dans la sphère de rayon r ; deux cas se
présentent :

? Pour r > R, Qint = Q = ρ× 4

3
πR3 ; l’application du théorème de Gauss conduit

à :

~Eext =
Q

4πε0r2
~ur =

ρR3

3ε0r2
~ur

Tout se passe comme si toute la charge étant concentrée au centre !

? Pour r < R, Qint = ρ× 4

3
πr3 ; l’application du théorème de Gauss conduit à :

~Eint =
ρr

3ε0
~ur

On constate que le champ est continu en r = R. Ceci est toujours vrai dans le cas
d’une distribution volumique de charge.

→ Potentiel électrostatique :

? Pour r > R : (avec le choix d’un potentiel nul à l’infini)
dV

dr
= − Q

4πε0r2
⇒ ∀ r > R, V (r) =

Q

4πε0r

? Pour r < R : (avec la continuité du potentiel en r = R)
dV

dr
= − ρr

3ε0
⇒ ∀ r ∈ [0, R], V (r) =

ρ

6ε0

(
3R2 − r2

)

Ex. 3 : fil infini uniformément chargé (symétrie cylindrique)

On considère un fil infini d’axe (Oz) portant une charge linéique λ uniforme.

θM(r,   ,z)

z

λ

Π

’Π

? Étude des symétries et invariances :

Les plans Π = (M,~ur, ~uθ) et Π′ = (M,~ur, ~uz) sont des plans de symétrie de la
distribution de charges, le champ en M est contenu dans ces deux plans et il est
donc dirigé selon ~ur :

~E(M) = ~E(r, θ, z) = Er(r, θ, z)~ur

La distribution de charges est invariante par toute rotation d’angle θ et par toute
translation selon (Oz) :

~E(M) = Er(r, θ, z)~ur = Er(r)~ur

? Choix de la surface de Gauss : on considère la surface Σ d’un cylindre d’axe
vertical Oz, de hauteur h et de rayon r, les surfaces inférieure et supérieure sont
nommées S1 et S2, la surface latérale Sl.

? Application du théorème de Gauss :
Calculons le flux à travers cette surface Σ :

ΦΣ = ΦSl
+ ΦS1︸︷︷︸

=0

+ ΦS2︸︷︷︸
=0

=

∫∫
Sl

−→
E .
−→
dS

ΦΣ =

∫∫
Sl

Er(r)~ur.dS~ur = Er(r)

∫∫
Sl

dS = Er(r)2πrh

La charge contenue dans le cylindre vaut Qint = λh ; l’application du théorème
de Gauss conduit à :

~E =
λ

2πε0r
~ur

? Potentiel électrique scalaire
Sachant que

−→
E = −

−−→
gradV :

Er = −∂V
∂r

; Eθ = 0 = −1

r

∂V

∂θ
; Ez = 0 = −∂V

∂z
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∂V

∂r
=

dV (r)

dr
= − λ

2πε0r
donc V (r) = − λ

2πε0
ln
( r
R

)
+ V0 (V (R) = V0)

La distribution de charge étant d’extension infinie, le potentiel n’est pas nécessai-
rement nul à l’infini, on impose alors une constante V0 arbitraire pour r = R.

Plan infini uniformément chargé

On considère un plan infini Π = (xOy) portant une charge surfacique σ.
S
1

S
2

O

x

y

z

Π

σ

M(z)

? Étude des symétries et invariances :

Les plans (M,~ux, ~uz) et (M,~uy, ~uz) sont des plans de symétrie de la distribution.
Le champ ~E(M) est contenu dans leur intersection :

~E(M) = ~E(x, y, z) = Ez(x, y, z)~uz

La distribution de charges est invariante par toute translation selon (Ox) et (Oy) :
~E(M) = Ez(x, y, z)~uz = Ez(z)~uz

Le plan Π = (xOy) est un plan de symétrie de la distribution de charges donc
Ez(z) = −Ez(−z).

? Choix de la surface de Gauss : on considère la surface Σ d’un cylindre d’axe
vertical, les surfaces inférieure et supérieure ont une aire S et sont équidistantes
du plan Π.

? Application du théorème de Gauss :
Calculons le flux à travers cette surface :

ΦΣ = Φlatéral︸ ︷︷ ︸
=0

+ΦS1 + ΦS2 =

∫∫
S1

~E.d~S +

∫∫
S2

~E.d~S

ΦΣ = 2

∫∫
S1

Ez(z)~uz.dS~uz = 2Ez(z)S

La charge contenue dans le cylindre vaut Qint = σS ; l’application du théorème
de Gauss conduit à :

~E =
σ

2ε0
~uz (z > 0) et ~E = − σ

2ε0
~uz (z < 0)

Remarque : on observe une discontinuité du champ électrique à la traversée de
la surface chargée.

~E(z = 0+)− ~E(z = 0−) =
σ

ε0
~uz

Ce résultat est général pour une distribution surfacique de charge.
n
12

1

2

σ

~E2 − ~E1 =
σ

ε0
~n12

6 Principe de superposition

Les équations de Maxwell étant linéaires, le champ ~Etot créé par un ensemble de
distributions de charges est la somme des champs créés par chacune des distribu-
tions prise isolément.

~Etot = ~E1 + ~E2 + . . .

Exemple :

On considère le champ électrique créé par la présence de deux charges ponctuelles :

E1E2 ux

uy

P2P1

Etot

q q

a a

M

θ

y

~E(M) = ~E1(M) + ~E2(M) =
q

4πε0

(
~uP1M

P1M2
+
~uP2M

P2M2

)
=

2q

4πε0 (a2 + y2)
cos θ~uy

⇒ ~E(M) =
qy

2πε0 (a2 + y2)3/2
~uy
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7 Applications

7.1 Condensateur plan

Présentation

On considère deux armatures planes en regard, l’ensemble est soumis à une diffé-
rence de potentiel U , les armatures portent des charges électriques opposées.

E

−
−
−
−
−
−

+
+
+
+
+
+U

+Q −Q

A B

Expression du champ électrique

→ Modélisation : les armatures ont une aire S et sont distantes de e. On suppose
que les dimensions latérales sont grandes devant l’espacement entre les plaques,
on peut alors faire l’approximation de plaques infinies et définir des densités sur-
faciques σ = Q/S et −σ uniformes. Cette modélisation revient à « négliger les
effets de bord ».

→ Méthode de calcul : connaissant le champ créé par une plaque infinie chargée
uniformément, on en déduit le champ créé par l’ensemble des deux plaques en
utilisant le principe de superposition :

2ε
ο

ux
σ

2ε
ο

ux
σ

2ε
ο

ux
σ

σ

2ε
ο

xu
σ

2ε
ο

xu
σ

2ε
ο

xu

σ
uxε

ο
00

champ créé 

par A seul

A−

champ créé
par B seul

B

−

champ 
résultant

σ σ−

On obtient donc un champ uniforme ~E =
σ

ε0
~ux au sein du condensateur et nul en

dehors.

En calculant la circulation du champ électrique entre les deux plaques, on en
déduit :

U = VA − VB =

∫ B

A

~E.d~l = E × e ⇒ U = E × e =
σe

ε0

Capacité du condensateur plan

Très généralement la capacité du condensateur désigne son aptitude à stocker des
charges pour une tension donnée à ses bornes :

C =
Q

U
en farad (F)

Dans le cas du condensateur plan :

C =
σS

σe/ε0
⇒ C =

ε0S

e

Énergie électrostatique

u

Ci

Le condensateur reçoit une puissance électrique :

p = ui = u
dq

dt
= u× C du

dt
= Cu

du

dt
=

d

dt

(
1

2
Cu2

)
On peut donc définir une énergie contenue dans le condensateur :

Ec =
1

2
Cu2

Cette énergie, de nature électrostatique, est associée à la présence d’un champ
électrique non nul au sein du condensateur. On peut en donner une expression
volumique :

ωE =
Ec

S × e
=

1

2
× ε0S

e
× (Ee)2 × 1

Se
⇒ ωE =

1

2
ε0E

2

En un point où existe un champ électrique, la densité volumique d’énergie élec-
trique vaut :

ωE =
1

2
ε0E

2

Rôle des isolants

→ En insérant un isolant entre les armatures d’un condensateur, on augmente sa
capacité.

→ En présence d’un matériau isolant, nommé diélectrique, de permittivité relative
εr, à la place du vide entre les armatures, la capacité du condensateur devient :
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C =
ε0εrS

e

Matériau Paraffine Plexiglas Air sec
εr 2,2 3,3 1

7.2 Énergie potentielle électrique d’une charge

Expression

L’énergie potentielle électrique d’une charge q soumis à un potentiel V (M) vaut :

Ep = qV (M)

Justification : en présence d’un champ électrique, la charge q est soumise à une
force :

~f = q ~E = −q ×
−−→
gradV = −

−−→
grad (qV ) = −

−−→
grad (Ep)

Application

On s’intéresse à une particule chargée et accélérée en présence d’un champ élec-
trique. Par exemple un électron dans l’exemple ci-dessous :

U=VB
−VAe−

BA f

E

La seule force présente est la force électrique qui dérive d’une énergie potentielle,
l’énergie mécanique de la particule se conserve.

EcB + EpB = EcA + EpA ⇒ 1

2
mv2

B =
1

2
mv2

A + q (VA − VB)

avec q(VA − VB) = −qU = eU et une vitesse en A nulle, on en déduit :

vB =

√
2eU

m

7.3 Théorème de Gauss gravitationnel

Énoncé

Considérons la force d’interaction gravitationnelle entre deux masses et la force
électrostatique entre deux charges. Ces forces sont tout à fait similaires dans leur
forme :

q1

q2

u12r12
u12r12

m1

m 2

~fe1→2 =
q1q2

4πε0r2
12

~u1→2 ←→ ~fg1→2 = −Gm1m2

r2
12

~u1→2

On peut donc, par analogie avec le cas électrique, définir un champ de gravitation
et formuler un théorème de Gauss gravitationnel.

~fe1→2 =
q1q2

4πε0r2
~u1→2 ←→ ~fg1→2 = −Gm1m2

r2
~u1→2

~fe1→2 = q2
~E1(M2) ←→ ~fg1→2 = m2

~G1(M2)

~E1(M2) =
q1

4πε0r2
12

~u12 ←→ ~G1(M2) = −Gm1

r2
12

~u12

q1 ←→ m1

1

4πε0
←→ −G

1

ε0
←→ −4πG∫����∫ ~E.d~S =

Qint
ε0

←→
∫����∫ ~G.d~S = −4πGMint

Application : corps à symétrie sphérique

Soit un corps sphérique (Terre, Soleil, Lune,. . .) de masse M , de centre O, de
rayon R et de masse volumique ρ(r) ne dépendant que de la distance r au centre
O (pour simplifier on traite le cas ρ = cste).

→ Étude des symétries et invariances : ~G = Gr(r)~ur
→ Choix de la surface de Gauss : on considère la surface Σ d’une sphère de rayon
r et de centre O.

? Application du théorème de Gauss :

Calculons le flux à travers cette surface :
ΦΣ = Gr(r)4πr2

→ Pour r > R, Mint = ρ × 4

3
πR3 = M ; l’application du théorème de Gauss
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conduit à :
~G(r) =

−4πGM

4πr2
~ur =

−GM
r2

~ur

Pour une distribution de masse à symétrie sphérique, le champ de gravitation à
l’extérieur de la distribution est le même que si toute la masse était concentrée au
centre.
? Pour r < R, Mint = ρ× 4

3
πr3 ; l’application du théorème de Gauss conduit à :

~G(r) = −4πGρr

3
~ur

On constate que le champ de gravitation est continu en r = R.

Capacités exigibles :

→ Exploiter les symétries et invariances d’une distribution de charges et de cou-
rants pour en déduire les propriétés de ~E.

→ Citer les équations de Maxwell-Gauss et Maxwell-Faraday. Particulariser ces
équations au régime stationnaire.

→ Relier l’existence du potentiel scalaire électrique au caractère irrotationnel
de ~E. Exprimer une différence de potentiel comme une circulation du champ
électrique.

→ Associer l’évasement des tubes de champ à l’évolution de la norme de E en
dehors des sources. Représenter les lignes de champ connaissant les surfaces équi-
potentielles et inversement. Évaluer le champ électrique à partir d’un réseau de
surfaces équipotentielles.

→ Établir l’équation locale du deuxième ordre reliant le potentiel à la densité de
charge (Équation de Poisson).

→ Énoncer et appliquer le théorème de Gauss.
Établir le champ électrique et le potentiel créés par :

— une charge ponctuelle,
— une distribution de charge à symétrie sphérique.
— une distribution de charge à symétrie cylindrique.

Utiliser le modèle de la distribution surfacique de charge dans le cas d’une dis-
tribution volumique d’épaisseur faible devant l’échelle de description. Établir le
champ électrique créé par un plan infini uniformément chargé en surface.

→ Exploiter le théorème de superposition.

→ Établir la relation Ep = qV . Appliquer la loi de l’énergie cinétique à une
particule chargée dans un champ électrique.

→ Établir un tableau d’analogies entre les champs électrique et gravitationnel.

→ Décrire qualitativement le phénomène d’influence.
Exprimer le champ d’un condensateur plan en négligeant les effets de bord. En
déduire l’expression de la capacité.
Prendre en compte la permittivité du milieu dans l’expression de la capacité.

→ Citer l’expression de la densité volumique d’énergie électrique.
Retrouver l’expression de la densité volumique d’énergie électrique dans le cas du

condensateur plan à partir de la relation E =
1

2
CU2 .
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