Corrigé du TD T5A

Etude des équilibres liquide-vapeur des mélanges binaires

QCM DE COURS

1/ Faux : ce n'est le cas que d'un éventuel mélange homoazéotrope.

2/ Faux : exemple des mélanges à homoazéotropes

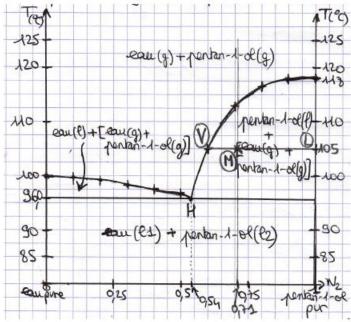
3/Vrai

4/ Faux : c'est le cas de tous les mélanges qui atteignent la température de l'hétéroazé otrope, car alors le système est triphasé.

5/ Faux : il permet d'accéder au rapport des quantités de matière totales dans les deux phases.

6/ Vrai

7/ Faux : la phase vapeur est un mélange où l'eau est très souvent majoritaire.


EXERCICES DE COMPETENCES

EXERCICE 1: CONSTRUCTION D'UN DIAGRAMME BINAIRE ISOBARE A PARTIR DES COURBES D'ANALYSE THERMIQUE

1/ Le changement d'état liquide/vapeur de tous les mélanges présente, à pression constante, un palier de température, sur lequel le système est triphasé. On a donc un mélange présentant un hétéroazéotrope et les deux liquides sont nonmiscibles (au moins partiellement, et même totalement non-miscibles sur la gamme de fractions massiques explorée).

2/ - le mélange de fraction massique $w_2 = 54$ % se comporte comme un corps pur à la pression de travail : c'est le mélange hétéroazéotropique. On en déduit les coordonnées de l'hétéroazéotrope : $(W_{2H} = 54 \%)$, $T_{H} = 96,0 °C$ et l'équation de la courbe d'ébullition : $T = T_H$;

- sur les courbes de refroidissement des autres mélanges, la première rupture de pente a lieu à l'apparition de la première goutte de liquide, c'est-à-dire à la température de rosée.

3.a/ Calculons tout d'abord la fraction massique en pentan-
1-ol :
$$W_2 = \frac{m_2}{m_1 + m_2} = \frac{M_2 \cdot n_2}{M_1 \cdot n_1 + M_2 \cdot n_2} \approx 71,0 \%$$

La verticale correspondant à cette composition de mélange coupe la courbe d'ébullition à 96,0 °C, température à laquelle le mélange commence à bouillir.

3.b/ Le point représentatif du système est alors le point M. D'après le théorème de l'horizontale :

- la phase liquide contient du pentan-1-ol pur;
- la phase vapeur (courbe de rosée) a une fraction massique $w_2^g \approx 0,60$ en pentan-1-ol.

D'après le théorème des moments : $\frac{m^1}{m^g} = \frac{MV}{ML} = \frac{w_2 - w_2^g}{1 - w_2} \approx$ $\frac{0.710-0.60}{1-0.710}$ soit $\frac{m^1}{m^8} \approx 0.38$.

De plus, $m^{\rm l} + m^{\rm g} = m_1 + m_2 = M_1 \cdot n_1 + M_2 \cdot n_2 \approx$ 62,1 g. On en déduit : $m^1 \approx 17 \text{ g et } m^g \approx 45 \text{ g}$.

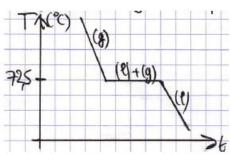
- dans la phase liquide, il y a 17 g de pentan-1-ol; Au bilan :

- dans la phase gazeuse, il y a $m^g \cdot w_2^g \approx 27$ g de pentan-1-ol et 45 - 27 = 18 g d'eau.

EXERCICE 2: MELANGE EAU/ETHANOATE D'ETHYLE

1/ Ce diagramme est à homoazéotrope, de sorte qu'à l'état liquide, les deux composés sont totalement miscibles. En revanche, le mélange n'est pas idéal : ceci était prévisible puisque l'eau et l'éthanoate d'éthyle développent le même type

d'interactions de Van der Waals, mais l'eau peut établir en plus des liaisons hydrogène.

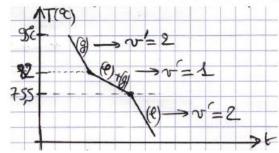

2/ I: phase liquide homogène (1) [eau + EE] II et III: phase liquide (l) + phase gazeuse (g)

IV: phase gazeuse homogène (g) [eau + EE]

La courbe supérieure est la courbe de rosée (température pour laquelle, à composition donnée de la phase gazeuse, apparait une première goutte de liquide). La courbe inférieure est la courbe d'ébullition (température pour laquelle, à composition donnée de la phase liquide, apparait une première bulle de vapeur).

3/ Ce mélange est l'homoazéotrope à la pression atmosphérique, qui bout à température constante et à composition constante et égale des deux phases.

Lors du changement d'état de l'homoazéotrope, il y a : 6 paramètres intensifs de description $(P, T, x_{ee}^1, x_{eau}^1, x_{ee}^g, x_{eau}^g)$, reliés par 2 relations de fermeture $(x_{ee}^1 +$ $x_{\rm eau}^{\rm l}=1, x_{\rm ee}^{\rm g}+x_{\rm eau}^{\rm g}=1$), 2 relations de Guldberg et Waage à l'équilibre $(K_{\text{vap,ee}}^{\circ}(T) = \frac{P \cdot x_{\text{ee}}^{g}}{P^{\circ}} \text{ et } K_{\text{vap,eau}}^{\circ}(T) = \frac{P \cdot x_{\text{eau}}^{g}}{P^{\circ}}) \text{ et 2 relations supplémentaires } (P = 1)$ 1,013 bar et $x_{\rm ee}^{\rm g}=x_{\rm ee}^{\rm l}$). Le nombre de degrés de liberté est donc : L=6-2-2-12 = 0, d'où la température fixée lors du changement d'état.


4/ Sur la verticale $x_{ee} = 40$ %, on détermine $T_{rosée} \approx 82$ °C et $T_{ébullition} \approx$ 75,5 °C. La courbe de refroidissement isobare s'en déduit.

5/ A 80 °C, on lit respectivement sur les courbes d'ébullition et de rosée, à l'horizontale : $x_{ee}^1 \approx 23 \%$ et $x_{ee}^g \approx 45 \%$.

D'après le **théorème des moments** : $\frac{n^1}{n^g} = \frac{x_{ee}^g - x_{ee}}{x_{ee} - x_{ee}^1} \approx \frac{45 - 40}{40 - 23}$ soit $\frac{n^1}{n^g} \approx 0.29$.

Or, $n^1+n^g=10$ mol. Donc : $n^1\approx 2$, 2 mol et $n^g\approx 7$, 8 mol. Au bilan :

- phase liquide : $n^{\rm l} \cdot x_{\rm ee}^{\rm l} \approx 0$, 5 mol et $n^{\rm l} \cdot \left(1 x_{\rm ee}^{\rm l}\right) \approx 1$, 7 mol d'eau ; phase gazeuse : $n^{\rm g} \cdot x_{\rm ee}^{\rm g} \approx 3$, 5 mol et $n^{\rm g} \cdot \left(1 x_{\rm ee}^{\rm g}\right) \approx 4$, 3 mol d'eau.

6/ En tête de colonne, on récupère (premier fuseau de gauche) le distillat qui est le mélange homoazéotropique de composition 66 % en EE, à sa température d'ébullition : 72,5 °C. Le résidu de distillation est de l'eau pure.

EXERCICE 3: MELANGE BINAIRE EAU-CYCLOHEXANE

1/ On a un diagramme à hétéroazéotrope correspondant à un mélange totalement non miscible à l'état liquide.

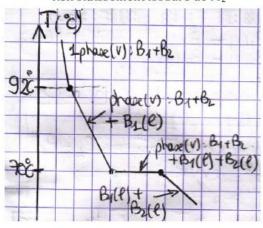
I: mélange vapeur homogène {B₂(g) + B₁(g)} IV : mélange liquide hétérogène $\{B_2(l_2)\}$ + $\{B_1(l_1)\}$

II: phase vapeur homogène $\{B_2(g) + B_1(g)\}$ + phase liquide $B_1(l_1)$

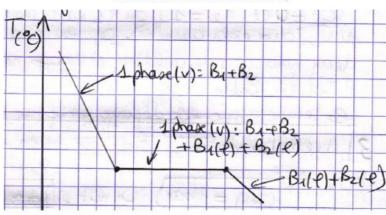
III: phase vapeur homogène $\{B_2(g) + B_1(g)\}\$ + phase liquide $B_2(l_2)$

2/ Il s'agit de la courbe de rosée, lieu des températures d'apparition de la première goutte de liquide à partir des mélanges gazeux correspondants.

3/ H est le point hétéroazéotropique ou hétéroazéotrope. En ce point, deux phases liquides (l_1 de composition $x_2^{l_1} = 0$, et l_2 de composition $x_2^{l_2} = 1$) coexistent avec une phase vapeur de composition $x_2^{v} = x_2(H)$. La composition globale des phases liquides est également x_2 (H).


Paramètres intensifs de description : P, T, $x_2^{l_1}$, $x_2^{l_2}$, x_2^{v} (5).

Relations entre ces paramètres : deux relations de Guldberg et Waage pour les équilibres liquide-vapeur de B_1 d'une part, de B_2 d'autre part ; $x_2^{l_1} = 0$; $x_2^{l_2} = 1$ (4). <u>Relation supplémentaire</u> : P est fixée (1).


On en déduit que le nombre de degrés de liberté est ici L=0. On retrouve bien que la température et la composition x_2^v de la phase vapeur en ce point (et en tout point de la courbe d'ébullition) sont fixés.

4/

Refroidissement isobare de M2

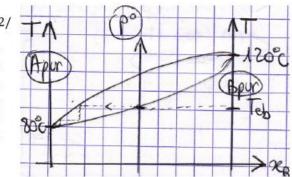
Refroidissement isobare de M3

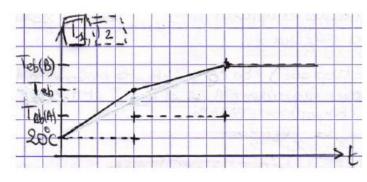
5/ Le système contient une phase vapeur dont la composition se lit à l'horizontale sur la courbe de rosée : $x_2^{\rm v} \approx 0,55$, et d'eau liquide pure $(x_2^{l_1} \approx 0)$. D'après le théorème des moments : $\frac{n^{l_1}}{n^{v}} = \frac{|x_2 - x_2^{v}|}{|x_2 - x_2^{l_1}|} \approx 1,2$. Or, $n^{l_1} + n^{v} \approx 11$ mol. On en déduit : $n^{l_1} \approx 1$

5,0 mol et $n^{v} \approx 6,0$ mol.

Au bilan:

- phase liquide (l₁): $n_{\rm B_1}^{\rm l_1} \approx 5.0~{
m mol}$ - phase vapeur (v): $n_{\rm B_2}^{\rm v} = x_2^{\rm v} \cdot n^{\rm v} \approx 1.8~{
m mol}$

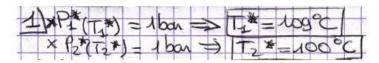

 $n_{\rm B_1}^{\rm v} = n^{\rm v} - n_{\rm B_2}^{\rm v} \approx 4.2 \; {
m mol}$

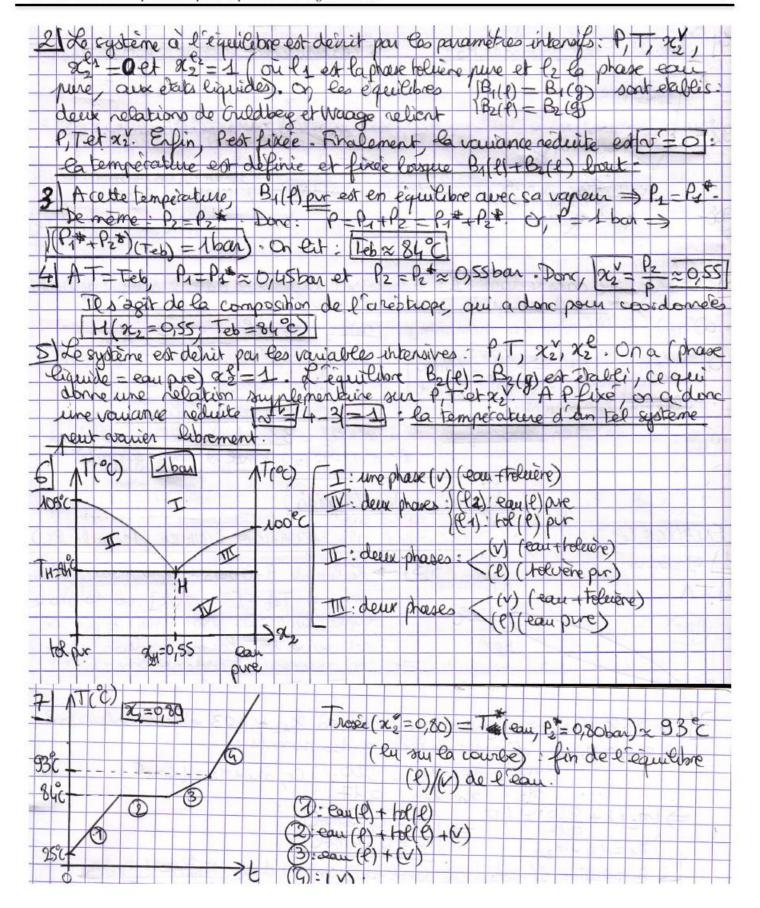

EXERCICES DE REFLEXION

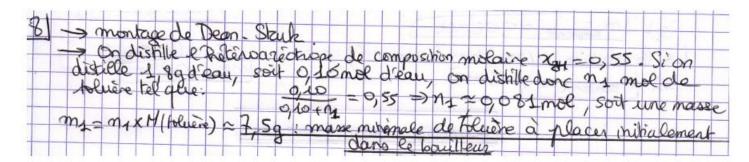
EXERCICE 4: DISTILLATION FRACTIONNEE D'UN MELANGE BINAIRE

1/ Cf. cours.

3/ Le liquide A + B dans le bouilleur s'échauffe jusqu'à la température $T_{\rm \acute{e}b}(x_{\rm B.ini}) \in [80\,{}^{\circ}{\rm C}; 120\,{}^{\circ}{\rm C}]$, aucune vapeur n'atteignant la tête de colonne, où $T_2 = T_{amb}$. Lorsque T_1 atteint $T_{\acute{e}b}(x_{B,ini}) \in [80 \, ^{\circ}C; 120 \, ^{\circ}C]$ où la phase vapeur apparait. Dès lors, A pur se retrouve sous la forme vapeur en tête de colonne (pouvoir séparateur infini) car il est le plus volatil; il s'y recondense à $T_2 = T_{\text{vap}}^*(A)$, et ceci tant qu'il reste du composé A liquide dans le bouilleur.






Au cours de la distillation, le liquide dans le bouilleur s'appauvrit donc en A (et s'enrichit en B). La température $T_1 = T_{\text{\'eb}}(x_B)$ suit donc la courbe d'ébullition de $x_B = x_{B,\text{ini}}$ à $x_{\rm B}=1$: il ne reste alors plus de A dans le liquide, et $T_1=$

A partir de ce moment, B distille seul, et $T_1 = T_2 = T_{\text{vap}}^*(B)$.

EXERCICE 5: ENTRAINEMENT HETEROAZEOTROPIQUE

EXERCICE 6: MELANGE BINAIRE EAU-ISOBUTANOL

1/ Ce diagramme montre que le mélange liquide eau-isobutanol n'est pas totalement miscible (et donc pas idéal). 2/

1	phase (g) homogène [eau + isobutanol]
2	phase (l1) homogène [solution d'isobutanol dans l'eau]
4	phase (12) homogène [solution d'eau dans l'isobutanol]
6	liquide hétérogène : phase (l1) + phase (l2)
3	phase (g) + phase (l1)
5	phase (g) + phase (l2)

3/ La courbe de rosée est l'union des arcs (AG) et (GD); la courbe d'ébullition est la réunion des arcs (AB), (BE) et (ED). Enfin, les courbes de démixtion sont les arcs (BC) d'une part et (EF) d'autre part.

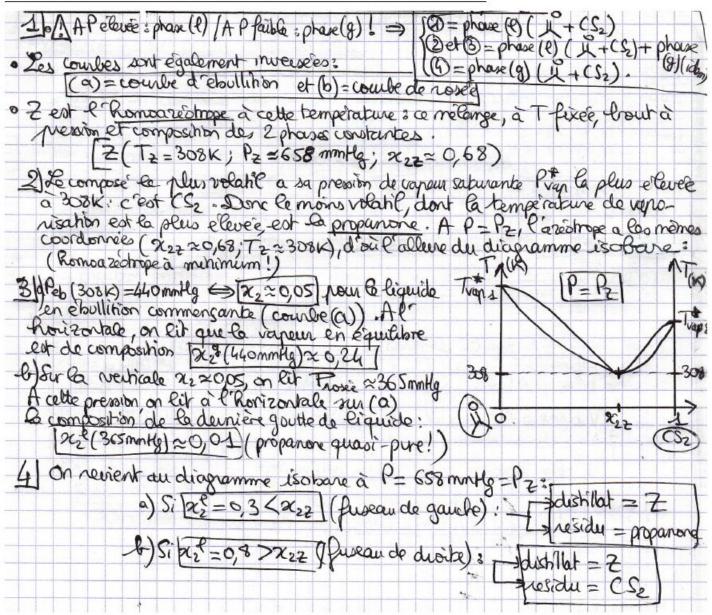
4/ G est le point hétéroazéotropique.

5/ D'une part, l'arc (EF) est quasi-vertical :à saturation, la concentration de l'eau dans l'isobutanol ne dépend pas de T; autrement dit, la solubilité de l'eau dans l'isobutanol ne dépend quasiment pas de T.

D'autre part, à saturation, $x_A^{\text{sat}} = 1 - x_B^{\text{sat}} \approx 0.6$: cette solubilité est très importante (ce n'est pas le cas de celle de l'isobutanol dans l'eau!)

6/ Mélange de composition $x_A = 0.20$

De 110 °C à 94 °C, la vapeur se refroidit ; à 94 °C, la première goutte de liquide (solution d'isobutanol dans l'eau) apparait. Entre 94 °C et 89,5 °C, la vapeur se liquéfie progressivement et la température continue à diminuer ; la phase vapeur s'enrichit en isobutanol. A 89,5 °C, une nouvelle phase liquide apparait (solution d'eau dans l'isobutanol). La vapeur, de composition hétéroazéotropique, finit de se liquéfier et disparait. Puis les deux phases liquides continuent de refroidir.


Mélange de composition $x_{\Delta} = 0.60$

De 110 °C à 97,5 °C, la vapeur se refroidit; à 97,5 °C, la première goutte de liquide (solution d'eau dans l'isobutanol) apparait. Entre 97,5 °C et 90 °C, la vapeur se liquéfie progressivement et la température continue à diminuer ; la phase vapeur s'enrichit en eau. A 90 °C, la phase vapeur disparait. Puis la phase liquide continue de refroidir.

7/ A 85 °C, le système contient deux phases non miscibles : une solution (l1) contenant $x_A^{l1} = 3 \%$ d'isobutanol, et une solution (12) contenant $x_A^{12} = 40$ % d'isobutanol. D'après le théorème des moments : $\frac{n^{11}}{n^{12}} = \frac{x_A^{12} - x_A}{x_A - x_A^{11}} \approx \frac{0.20}{0.17}$. Or, $n^{11} + n^{12} = \frac{x_A^{12} - x_A}{x_A^{12}} \approx \frac{0.20}{0.17}$. 1,0 mol. On en déduit : $n^{11} \approx 0,54 \text{ mol et } n^{12} \approx 0,46 \text{ mol}$.

- Au bilan:
 - dans la phase liquide (l1) : $n_A^{l1} = x_A^{l1} \cdot n^{l1} \approx 0$, 02 mol et $n_{\rm eau}^{l1} = (1 x_A^{l1}) \cdot n^{l1} \approx 0$, 52 mol ; dans la phase liquide (l2) : $n_A^{l2} = x_A^{l2} \cdot n^{l2} \approx 0$, 18 mol et $n_{\rm eau}^{l2} = (1 x_A^{l2}) \cdot n^{l2} \approx 0$, 28 mol.

EXERCICE 7: DIAGRAMME BINAIRE ISOTHERME PROPANONE-SULFURE DE CARBONE

