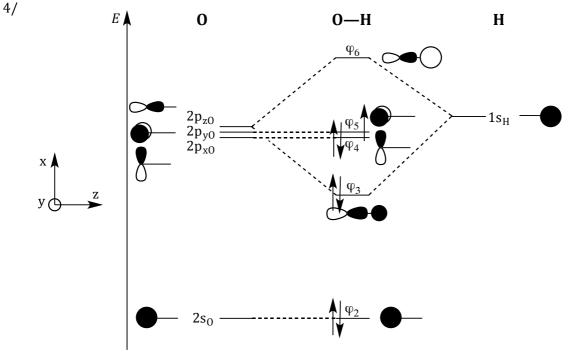
Corrigé du DM n°2 de Chimie : Orbitales moléculaires

PROBLEME 1: CHIMIE INTERSTELLAIRE

1/ Les OM cherchées sont soit les OA de coeur de chacun des deux atomes, soit des combinaisons linéaires des OA de valence de ces atomes. On construit ces <u>combinaisons linéaires d'OA de valence</u> à partir d'OA de <u>même symétrie</u>, <u>d'énergie relativement proche</u>, et dont le <u>recouvrement n'est pas négligeable</u>.


2/ L'OM ϕ_1 a une énergie notablement inférieure aux autres OM. Il s'agit en réalité d'une OM, donc une OA de cœur, la seule étant la 1s de l'atome d'oxygène : $\underline{1s_0} = \underline{\phi_4}$.

3/ On considère les propriétés de symétrie des OA de valence par rapport à des éléments de symétrie de la molécule et des fragments : les plans (Oxz) et (Oyz). Avec S = symétrique et AS = antisymétrique :

		HYDROGENE			
OA de valence	2s ₀	2p _{x0}	2p _{y0}	2p _{zO}	1s _H
Symétrie par rapport à (Oxz)	S	S	AS	S	S
Symétrie par rapport à (Oyz)	S	AS	S	S	S

Seules les OA $2s_0$ et $2p_{z0}$ de l'atome d'oxygène ont les mêmes propriétés de symétrie que la $1s_H$ de l'hydrogène, et peuvent donc interagir avec elle. Cependant, $E(2s_0) \ll E(2p_0) \approx E(1s_H)$. En pratique, <u>on ne considèrera donc que l'interaction à deux OA suivantes : $1s_H$ avec $2p_{z0}$.</u>

Le radical OH a 1(H) + 6(O) = 7 électrons de valence que l'on place à l'aide du principe de Pauli et du principe de stabilité.

5/ OM non liantes (centrées sur 0) : φ_1 , φ_2 , φ_4 , φ_5 .

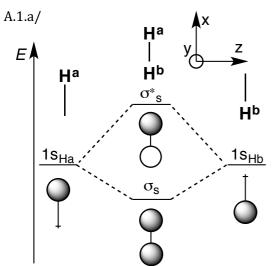
OM liante : $\underline{\varphi}_3 = \underline{\sigma}$ (OM L de symétrie axiale)

OM antiliante : $\underline{\varphi_6} = \underline{\sigma}^*$ (OM AL de symétrie axiale)

6/ On calcule les énergies électroniques du radical OH d'une part, et des atomes isolés d'autre part :

- $E_{
 m \'el}({
 m OH})=2~E\left({
 m arphi}_1
 ight)+2~E\left({
 m arphi}_2
 ight)+2~E\left({
 m arphi}_3
 ight)+2~E\left({
 m arphi}_4
 ight)+E\left({
 m arphi}_5
 ight)=-1202,9~{
 m eV}$
- $E(0) + E(H) = 2E(1s_0) + 2E(2s_0) + 4E(2p_0) + E(1s_H) = -1192,4 \text{ eV}$

La formation du radical permet donc de stabiliser l'édifice de -1192,4 - (-1202,9) = 10,5 eV.

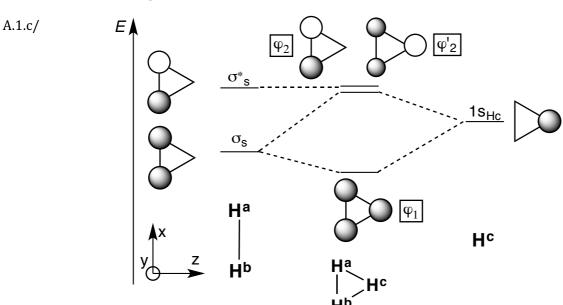

7/ Par définition, l'indice de liaison entre les deux atomes est : $\underline{\text{IL}} = \frac{1}{2}$ (occupation de φ_3 – occupation de φ_c), soit $\underline{\text{IL}} = \frac{1}{2}$ (2-0) = 1 : conforme à la représentation de Lewis (liaison simple) :

8/ Dans HO-, l'OM ϕ_5 est maintenant remplie de deux électrons. On a donc ajouté un électron dans une OM non liante, de sorte que la longueur de liaison ne devrait pas évoluer notablement entre OH et HO-.

9/ Seule (b) est antiliante entre O et H, de sorte que (b) = ϕ_6 . Celle qui ressemble le plus à la $2s_0$ est (c) = ϕ_2 . Par élimination, (a) = ϕ_3 , liante entre O et H et mettant en œuvre la $2p_{z0}$.

Outre l'OA $2p_{z0}$, il semble que l'OA $2s_0$ interagisse également avec la $1s_H$ (voir ϕ_2 pour laquelle cela est clair), malgré la différence d'énergie entre ces deux orbitales. On a donc une interaction à trois OA, donnant ces trois OM.

PROBLEME 2: STABILISATION D'UN CARBOCATION PAR MESOMERIE

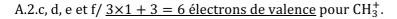


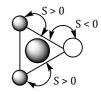
A.1.b/ Plan de symétrie commun aux deux fragments : (Oyz)

	FRAGME	FRAGMENT H ^c	
Orbitale	$\sigma_{\!\scriptscriptstyle m S}$	$\sigma_{ ext{s}}^{*}$	1s _H c
Symétrie	S	AS	S

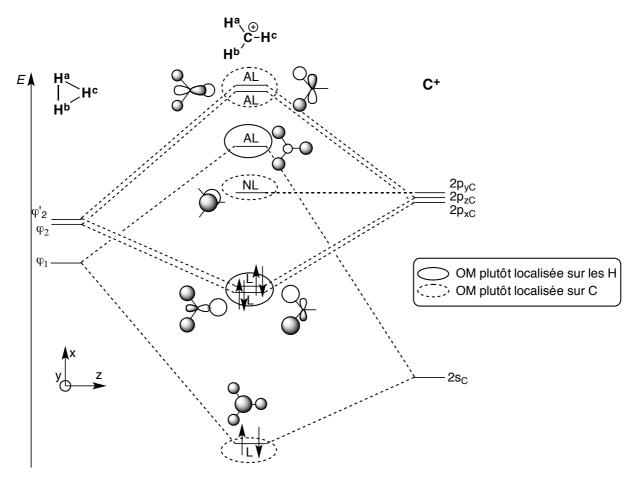
Seule une orbitale de même symétrie que la $1s_{H^c}$ peut interagir avec elle : c'est le cas de la σ_s , mais pas de la σ_s^* .

NB: on aurait pu prendre le plan (Oxz), mais ceci ne nous apporte aucun renseignement supplémentaire car toutes les orbitales de fragment sont symétriques par rapport à ce plan.




A.2.a/ Deux sous-couches : 2s et 2p, la dernière ayant une énergie plus importante. Donc, le niveau E = -19.4 eV correspond à la 2s_C, alors que le niveau E = -10.7 eV correspond à la 2p_{xC}, la 2p_{yC} et la 2p_{zC}.

A.2.b/ On considère cette fois-ci deux plans de symétrie des deux fragments : (0xz) et (0yz).

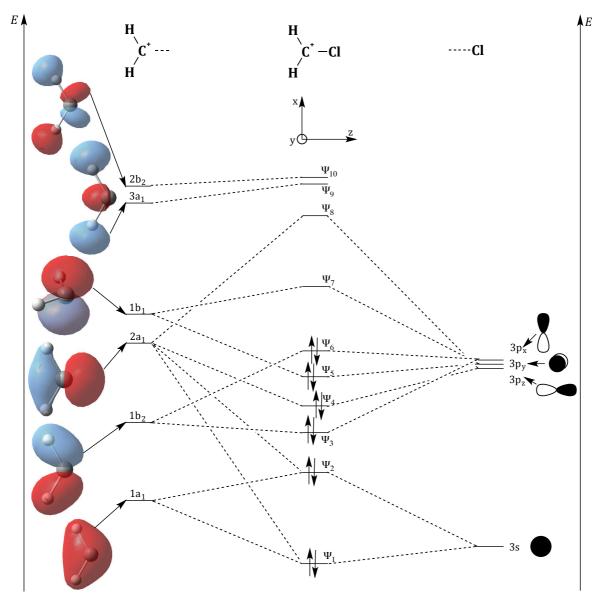

	FRAGMENT C]	FRAGMENT H	3
Orbitale	2s _C	2p _{xC}	2p _{yC}	2p _{zC}	φ_1	$arphi_2$	$arphi_2'$
Sym. (Oxz)	S	S	AS	S	S	S	S
Sym. (Oyz)	S	AS	S	S	S	AS	S

- \rightarrow La $2p_{vC}$ ne peut interagir avec aucune orbitale du fragment H_3 .
- ightarrow La $2p_{xC}$ n'interagit qu'avec la $arphi_2$ du fragment H_3 .
- ightarrow La $2s_{C}$ peut *a priori* interagir avec φ_{1} et φ'_{2} , mais **n'interagit qu'avec la \varphi_{1}**, car le recouvrement entre $2s_{C}$ et φ'_{2} est négligeable (en fait il est nul) :
- ightarrow La $2p_{zC}$ peut a priori interagir avec φ_1 et φ_2' , mais n'interagit qu'avec la φ_2' , car le recouvrement entre $2p_{zC}$ et φ_1 est négligeable (en fait il est nul) :

L'orbitale non liante, la $2p_{yC}$, plus basse vacante, rend compte de la lacune électronique de la formule de Lewis de CH_3^+ .

On obtient donc 4 électrons dans les OM plutôt localisées sur les H contre 2 électrons seulement dans les OM plutôt localisées sur le C. Compte tenu du nombre d'électrons de valence des atomes de H (1) et de C (4), on voit que c'est l'atome de carbone qui porte principalement la charge + dans ce modèle.

B.1/L = liant; AL = antiliant; NL = non-liant


ОМ	Ψ_1	Ψ_2	Ψ_3	Ψ_4	Ψ_5	Ψ_6	Ψ_7	Ψ_8	Ψ_9	Ψ_{10}
L/NL/AL	L	AL	L	L	L	AL	AL	AL	NL	NL
σ/π	σ	σ	π	σ	π	π	π	σ	/	/

B.2/	FRAGMENT CH ₂ ⁺			FRAGMENT Cl			
Orbitale de fragment	2a ₁	1b ₁	1b ₂	3p _x	3p _y	3p _z	
Symétrie par rapport à (0xz)	S	AS	S	S	AS	S	
Symétrie par rapport à (0yz)	S	S	AS	AS	S	S	

B.3, $4/\Rightarrow 2a_1$ et $3p_z$ interagissent pour donner : $\Psi_4=2a_1+3p_z$ et $\Psi_8=2a_1-3p_z$

 \rightarrow 1b₁ et 3p_y interagissent pour donner: $\Psi_5 = 1b_1 + 3p_y$ et $\Psi_7 = 1b_1 - 3p_y$

 \rightarrow 1b₂ et 3p_x interagissent pour donner: $\Psi_3 = 1b_2 + 3p_x$ et $\Psi_6 = 1b_2 - 3p_x$

Electrons de valence:

Cl: 7

C:4

 $H:1 \times 2$

 $\frac{\text{Total}}{\text{pour}}$: 13 pour CH_2Cl , donc 12 électrons de valence pour $\frac{\text{CH}_2\text{Cl}^+}{\text{Cl}^+}$.

B.5/ Quatre OM liantes $(\Psi_1, \Psi_3, \Psi_4 \text{ et } \Psi_5)$ et deux OM antiliantes $(\Psi_2 \text{ et } \Psi_6)$ entre C—Cl sont remplies, d'où un indice de liaison IL = $\frac{1}{2}$ (8–4) = 2, cohérent avec une liaison double C—Cl.

B.6/ A une OM vacante, la $2p_{yC}$, dans CH_3^+ , se substitue une OM remplie à deux électrons, Ψ_5 , qui rend donc compte de la délocalisation partielle des électrons de la $2p_y$ du chlore vers la $2p_y$ du carbone. Ceci explique la moindre charge partielle positive sur l'atome de carbone dans ce carbocation CH_2Cl^+ (en réalité, il faut tenir compte de tous les transferts électroniques, donc étudier toutes les OM occupées sous le même angle...).

Le modèle de Lewis rend compte de ce transfert, ainsi que de la nature double de la liaison C—Cl dans ce carbocation, par l'existence d'une formule mésomère qui délocalise partiellement la charge positive sur Cl :