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DEVOIR MAISON N°1 : MECANIQUE

PROBLEME N°1

On s’intéresse au mouvement d’un point matériel P, de masse m, placé dans le champ newtonien
engendré par une masse M >>m . Cette derniére masse se situe a I'origine d’un repére Oxyz ; elle
sera considérée comme immobile dans le référentiel galiléen associé au repére z. L’attraction
MG

F

OP ou G est la constante de la gravitation, telle que

. - n
de la masse M sur le point P s’écrit —

G=6,67.10"'N.m> kg2, r =H(TPH ;

I.1  Montrer que le mouvement de P est plan.
1.2 On suppose alors que le mouvement de P se situe dans le plan xOy et on repére la position
de P par ses coordonnées polaires r=‘|()P‘5 et @ = angle situé entre Ox et OP. On note

il oo i —_— S , T
e. =—— et ey deux vecteurs unitaires, ¢, se déduisant de e, par une rotation de +5 rad
2

dans le plan xOy (voir figure I.1). Montrer que la quantité C = »* i—f est une constante du

mouvement.

v

3

Figure I.1 : reperes

I.3  On rappelle les formules de Binet pour la vitesse et I’accéleration radiale de P :

ot , du — — e 29 :
v, ==C—e¢, + Cueg e..a,=—Cu +u| ol u=—.
bl ¥ r 2

do r
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Montrer que 1"équation polaire de la trajectoire s’écrit sous la forme r =
ou p>0,e>0 et @, sont trois constantes (& :il). Exprimer p en fonctionde C,M et G.

Pour e <1, on parle de trajectoires liées ; il s’agit d’ellipses dont on exprimera le demi-grand
axe a en fonctionde p etde e (e est’excentricité de ’ellipse).

Donner I'expression de I'énergie potentielle £, du point P moyennant I"hypothése que

celle-ci s’annule a I'infini.

E, désignant I'énergie cinétique du point P, on appelle £=E, +E, I'énergie totale (ou

mécanique) de P. Donner I'expression de £ en fonction de m, M, G et a.
Donner I’expression de 7, la durée d’une révolution en fonction de a, M et G.

Les résultats obtenus vont étre appliqués au systéme solaire pour lequel on précise les masses
du Soleil, de la Terre et de Mars, respectivement M = 2,0.1(}30kg , mp = 6,0.1024kg,

my; =6,42.10%kg.
Les trajectoires de la Terre et de Mars sont supposées :
- circulaires,
- de centre le Soleil et de rayons respectifs =100 Ud, r, =152 U4

[1 UA:},Sﬂ.m”m)

- situees dans le méme plan,
Calculer les vitesses orbitales vy et v, de la Terre et de Mars.

Une sonde de masse m =1(}3kg est en orbite autour de la Terre a une distance du centre de
celle-ci, négligeable devant . A I'instant ¢ =0, on ajuste la vitesse de la sonde de telle fagon
que la sonde va devenir un satellite du Soleil. Dans cette question et dans la suivante, on
négligera donc 'attraction de la Terre et de Mars sur la sonde (voir figure L2, page 4). A

t=0, v, est perpendiculaire a I’axe Soleil-Terre ; on veut que 1’ellipse décrite par la suite

P
vienne tangenter la trajectoire de Mars au point A.
Quelle est la valeur du grand axe de I’ellipse décrite ? Connaissant 1’énergie potentielle a

t =0 ainsi que I'énergie totale sur la trajectoire elliptique, déterminer la valeur de ||a”
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Orbite terrestre

Figure 1.2 : trajectoire de la sonde entre la Terre et Mars

I.10 Calculer la durée AT du trajet de la sonde de la Terre vers Mars. La sonde doit pouvoir
approcher effectivement Mars pour pouvoir étre satellisée autour de cette planéte au point A.
A t=0, on suppose donc une position des planétes comme indiqué sur la figure L.3.

Déterminer I'expression de £ en fonction de vy, ry, et 7, puis calculer la valeur de cet

angle.
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Orbite terrestre

Figure 1.3 : durée du transfert ; angle §
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I.11 Par ajustement de la vitesse au point 4, la sonde est placée en orbite circulaire autour de
Mars, a une distance 7, du centre de cette derniere. A partir de la, 1’attraction de la Terre et

celle du Soleil sur la sonde seront considérées comme négligeables. La sonde ne présentant
pas de symétrie sphérique, on la modélise comme 1’assemblage de deux modules sphériques

m , e 5
de masses i de barycentres P, et P,, assemblés par une liaison de masse négligeable

devant m. C’est donc le barycentre G de cet ensemble qui décrit la trajectoire circulaire de
rayon r, autour de Mars ; on pose GP, =GP, =h. De plus, on va considérer un mouvement

particulier pour lequel les points P;, G, P, demeurent alignés avec le centre de Mars (voir

figure 1.4). Donner ’expression de la vitesse de rotation @ de la sonde autour de Mars, en

fonction de m,,, 1, et G. Application numerique pour r, =3,5. 10°m.

Orbite de P,.rayon ry +
Orbitede G, rayon ry

Orbite de P, rayon #y- h

“
% ¥,

Figure 1.4 : modelisation de la sonde

I.12 Pendant la durée de la mission autour de Mars, le référentiel 1ié a Mars sera considéré comme
pratiquement galiléen. Le mouvement du module de barycentre P, s’effectue donc sous

I’action de la force d’attraction de Mars et sous ’action d’une force ‘R due a ['action du
second module et transmise par la «liaison ». Cette force est colinéaire a AP, soit

R =R % Etablir I’expression de M en fonction de m, my,, G, r, et h. Simplifier cette

expression en supposant i <<#,. Calculer la valeur de ‘R pour A=10m, (vous allez trouver

une valeur faible montrant que la structure de la sonde n’est pas mise en péril par 1’existence
de cette force).
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PROBLEME N°2

Ce probleme se propose d’établir quelques propriétés simples de I'Univers, telle qu’on les
comprend actuellement, mais au moyen de modeéles physiques simplifiés. A notre échelle,
I'Univers est formé d’étoiles et de leurs planétes, regroupées en amas ou galaxies, ainsi
que d'une certaine quantité de gaz interstellaire. Cependant, a plus vaste échelle, nous
serons éventuellement amenés a traiter 'Univers comme un systéme fluide homogéne.

Donnees :
Célérité de la lumiere dans le vide c = 300108 ms!
Constante de Boltzmann kg =1,38-10> JK-!

Constante de la gravitation universelle | & = 6,67-10 "' m3 kg1.s2

Constante de Planck h=06063-10%]s
Durée d’'une année 365, 25jours = 3,16 - 107s
Masse du Soleil M =1,99-10° kg
Rayon du Soleil R =6,95-103m

Les quatre parties et de nombreuses questions peuvent étre abordées de maniere tres lar-
gement indépendante.

Partie I - Déviation de la lumiére par les étoiles

Cette partie étudie, dans un modele non relativiste, la déviation d’'une particule
par une étoile E , considérée comme une répartition de masse a symétrie sphé-
rique, de rayon R, de masse M et de centre O . La particule étudiée A est ponc-
tuelle et de masse m . On considére le systéme formé de A et E comme isolé. Le
référentiel d’étude (K ) est galiléen.
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On appellera Gxy le

plan du mouvement ;on  _,
repére la position de A _Z0
dans le plan Gxy par
ses coordonnées polaires
r = GA eta—(" 7).
On notera e e_,)a la base
locale palalre correspon-
dante (voir figure ci-con-
tre).

I.B.3) On pose

ﬁ%
o -e, = mC,

Expliciter C' en fonction de r et 6 = d0/d¢, puis expliciter la clt}érivée db/do
en fonction de .5, M et C. En déduire que le vecteur & = ad —ey est, pour un
choix que l'on précisera de la constante o, une constante du mouvement.

Expliquer pourquoi on ne perd pas de généralité dans I'étude du mouvement en
posant é = ee, avec e > 0.

1.B.4) A partir du résultat de la question précédente, exprimer G- ey en fonction
de a, e et 8 ; en déduire I'équation de la trajectoire, qu'on écrira sous la forme
P 1+ecose Expliciter p en fonction de a et C, puis en fonction de C, &
et M.

A quelle condition, portant sur e, la trajectoire de A est-elle hyperbolique ?

1.C - Etude de la trajectoire
On ne fait plus ici d’hypothése particuliére quant a la direction du vecteur 2
dans le plan Gxy du mouvement.

1.C.1) Lorsque la particule A est encore située a trés grande distance de I'étoile
E (x4 — -, voir la figure ci-dessus), sa vilesse u_; est colinéaire a Gx ;elle a
pour norme v, . Uasymptote A a cette trajectoire incidente passe a la distance
b de G. Exprimer C en fonction de b et v, ; préciser en particulier le signe de
C.

1.C.2) Lorsque la particule A s’est largement éloignée de l’etcule E , sa trajectoi-
reesta nouveau une droite A’ parcourue a la vitesse constante v, i Quelle est la
norme de o, ?

I.C.3)_)Ex rimer, pour ¢ — — « puis pour ¢ — +%, le vecteur ¢ projeté sur la
base ey, e, en fonction de o, v, et de l'angle de déviation ® entre les droites A
et A'.

En déduire une expression de tan(®/2) en fonction de v,, C,.Z et M.
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1.C.4) Lors de son mouvement, la particule A passe a un certain instant a une
distance minimale d du centre de I’étoile E . A partir par exemple de deux lois
de conservation, déterminer une équation du second degré dont 1/d est solu-
tion. En déduire que :

_ c:
GM + J.?EM? + C?v}

1.C.5) Quel est le sens de variation, pour v, fixé, de la fonction ®(d) reliant 'an-
gle de déviation et la distance minimale d’approche ? Commenter.

I.C.6) Lorsque cette distance minimale correspond & une trajectoire rasante
(d = R), quelle est la valeur de la déviation ®, ? On montrera que :

L GM
tan™ =
2 vEJR(R +p)

oll l'on exprimera p en fonction de &, M, et -

LI.C.7) Déterminer numériquement p, appelé rayon de Schwarzschild, dans le
cas du Soleil pour une particule de vitesse v, =c.

L.D - Déviation de la lumiére par le Soleil

La lumiére est ici traitée comme un faisceau de photons, particules dont la
masse m n'a pas besoin d’élre précisée dans la suite (méme si on sait
aujourd’hui qu’elle est nulle), et qu'on traitera dans le cadre de la méecanique
non relativiste (méme si cette approximation n’est pas légitime). Ces photons
seront considérés comme soumis, comme une particule matérielle ordinaire, a
Iinteraction gravitationnelle avee I'étoile.

On admettra que, pour les photons passant a proximité du Soleil, p « R (voir
1.C.6).

1.D.1) Déterminer, en secondes d’arc, la déviation ®, correspondant & un pho-
ton rasant le Soleil. On prendra v, = ¢.

1.D.2) Une expédition fut montée en mai 1919 pour observer cette déviation a
loccasion d'une éclipse de Soleil. La météo ne fut pas trés bonne, pas plus donc
que la qualité des observations ; toutefois, des mesures ultérieures menées lors
de diverses éclipses de 1922 a 1999 confirmérent progressivement une valeur
mesurée expérimentalement &, = 1,75" .

Pourquoi la mesure doit-elle étre menée lors d’'une éclipse du Soleil ? Commen-
ter la valeur de @, .

|
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LE - Effets de lentille gravitationnelle

La présence d’'un astre massif E sur le trajet d’'un faisceau de lumiére paralléle
provoque une déviation des rayons lumineux formant ce faisceau. L'angle de
déviation ® dépend de la distance b entre le rayon étudié et 'astre E, sous la
forme

D=K- T‘r ,ou M est la masse de 'astre E .
C

I.LE.1) Par analyse dimensionnelle, préciser I'unité de la grandeur constante «.

I.E.2) Montrer que la déviation gravitationnelle de la
lumiére par 'astre £ se comporte, pour un rayon pas-
sant a la distance b de 'astre E (cf. figure ci-contre),
comme une lentille convergente dont on exprimera la
distance focale f' en fonctionde 4, x, ¢, 5 et M.

On considére un rayon lumineux rasant la surface du Soleil ; b est donc voisin
du rayon R du Soleil.

I.E.3) Déterminer f dans ces conditions ; on prendra k¥ = 2 SI et on exprimera
le résultat en années-lumiére (une année-lumiére est la distance parcourue par
la lumiere pendant une année).

I.E.4) Uobservation des astres lointains et peu lumineux est parfois améliorée
lorsque s’interpose, sur le trajet de la lumiére entre ces astres et la Terre, une
galaxie massive. Pouvez-vous expliquer ce fait ?



